
IEOR 265 – Lecture 7
Semiparametric Models

1 Nuisance Parameters

Consider the basic linear model yi = x′iβ + εi, where εi is i.i.d. noise with zero noise with finite
variance. So far, we have focused on the question of estimating β; but, we could also ask the
question whether it is possible to say something about εi. The reason that we have not addressed
this issue is that, because the εi in this model represent random noise with zero mean, we do not
gain any information for the purposes of model prediction (i.e., estimating E[yi|xi] = x′iβ) by
estimating the εi (or alternatively information about its distribution). However, if we are inter-
ested in understanding the uncertainty of our model predictions, then it is valuable to estimate
the distribution of εi.

These εi are examples of nuisance parameters, which are any parameters that are not directly of
interest but must be considered in the estimation. (Note that the designation of a parameter as
a nuisance parameter is situationally dependent – in some applications, the nuisance parameter is
also of interest.) In general, we can have situations in which there are a finite number of nuisance
parameters or even an infinite number of nuisance parameters. There is no standard approach to
handling nuisance parameters in regression problems. One approach is to estimate the nuisance
parameters anyways, but unfortunately it is not always possible to estimate the nuisance parame-
ters. Another approach is to consider the nuisance parameters as “worst-case disturbances” and
use minmax estimators, which can be thought of as game-theoretic M-estimators.

1.1 Gaussian Noise in Linear Model

Consider the linear model in the situation where εi ∼ N (0, σ2) for some unknown variance σ2.
Recall that the M-estimator was given by

β̂ = argmax
β

n∑
i=1

(
− (yi − x′iβ)2/(2σ2)− 1

2
log σ2 − 1

2
log(2π)

)
.

In this case, the nuisance parameter is σ2. The way this parameter was handled was to observe
that the maximizer is independent of σ2, which allowed us to rewrite the M-estimator as

β̂ = argmax
β

n∑
i=1

−(yi − x′iβ)2 = argmin
β

n∑
i=1

(yi − x′iβ)2 = argmin
β
‖Y −Xβ‖22.
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1.2 Generic Noise in Linear Model

Now consider the linear model in the case where εi is a generic zero mean distribution, meaning
that it is of some unknown distribution. It turns out that we can estimate each εi in a consistent
manner. Suppose that we assume

1. the norm of the xi is deterministically bounded: ‖xi‖ ≤M for a finite M <∞;

2. conditions under which OLS β̂ is a consistent estimate of β.

Then we can use OLS to estimate the εi. Define

ε̂i = yi − x′iβ̂,

and note that

|ε̂i − εi| = |(yi − x′iβ̂)− εi|
= |x′iβ + εi − x′iβ̂ − εi|
= |x′i(β − β̂)|
≤ ‖xi‖ · ‖(β − β̂)‖,

where in the last line we have used the Cauchy-Schwarz inequality. And because of our assump-
tions, we have that |ε̂i − εi| = Op(1/

√
n).

Now in turn, our estimates of εi can be used to estimate other items of interest. For example,
we can use our estimates of ε̂i to estimate population parameters such as variance:

σ̂2 =
1

n

n∑
i=1

ε̂2i .

This estimator is consistent:

|σ̂2 − σ2| =

∣∣∣∣∣ 1n
n∑
i=1

ε̂2i −
1

n

n∑
i=1

ε2i +
1

n

n∑
i=1

ε2i − σ2

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ε̂2i −
1

n

n∑
i=1

ε2i

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

ε2i − σ2

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣ε̂2i − ε2i
∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

ε2i − σ2

∣∣∣∣∣.
where we have made use of the triangle inequality in the second and third lines. Next note that
|ε̂2i−ε2i | = Op(1/

√
n) by a version of the continuous mapping theorem and that | 1

n

∑n
i=1 ε

2
i−σ2| =

Op(1/
√
n) because of the CLT. Thus, we have that |σ̂2 − σ2| = Op(1/

√
n).
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2 Partially Linear Model

Consider the following model
yi = x′iβ + g(zi) + εi,

where yi ∈ R, xi, β ∈ Rp, zi ∈ Rq, g(·) is an unknown nonlinear function, and εi are noise. The
data xi, zi are i.i.d., and the noise has conditionally zero mean E[εi|xi, zi] = 0 with unknown and
bounded conditional variance E[ε2i |xi, zi] = σ2(xi, zi). This is known as a partially linear model
because it consists of a (parametric) linear part x′iβ and a nonparametric part g(zi). One can
think of the g(·) as an infinite-dimensional nuisance parameter.

3 Single-Index Model

Consider the following model
yi = g(x′iβ) + εi,

where yi ∈ R, xi, β ∈ Rp, g(·) is an unknown nonlinear function, and εi are noise. The data xi
are i.i.d., and the noise has conditionally zero mean E[εi|xi] = 0. Such single-index models can
be used for asset pricing, and here the g(·) can be thought of as an infinite-dimensional nuisance
parameter.

4 Nadaraya-Watson Estimation

Consider the nonlinear model yi = f(xi) + εi, where f(·) is an unknown nonlinear function.
Suppose that given x0, we would like to only estimate f(x0). One estimator that can be used is

β̂0[x0] =

∑n
i=1K(‖xi − x0‖/h) · yi∑n
i=1K(‖xi − x0‖/h)

,

where K(·) is a kernel function. This estimator is known as the Nadaraya-Watson estimator, and
it was one of the earlier techniques developed for nonparametric regression.

4.1 Alternative Characterizations

It turns out that we can characterize this estimator through multiple formulations. The first is
as the following M-estimator

β̂[x0] = argmin
β0
‖W 1/2

h (Y − 1nβ0)‖22 = argmin
β0

n∑
i=1

K(‖xi − x0‖/h) · (yi − β0)2.

A second characterization is as the mean with weights {K(‖x1− x0‖/h), . . . , K(‖xn− x0‖/h)}
of points {y1, . . . , yn}.
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4.2 Small Denominators in Nadaraya-Watson

The denominator of the Nadaraya-Watson estimator is worth examining. Define

ĝ(x0) =
1

nhp

n∑
i=1

K(‖xi − x0‖/h),

and note that ĝ(x0) is an estimate of the probability density function of xi at the point x0. This
is known as a kernel density estimate (KDE), and the intuition is that this is a smooth version of
a histogram of the xi.

The denominator of the Nadaraya-Watson estimator is a random variable, and technical problems
occur when this denominator is small. This can be visualized graphically. The traditional approach
to dealing with this is trimming, in which small denominators are eliminated. The trimmed version
of the Nadaraya-Watson estimator is

β̂0[x0] =

{∑n
i=1K(‖xi−x0‖/h)·yi∑n
i=1K(‖xi−x0‖/h) , if

∑n
i=1K(‖xi − x0‖/h) > µ

0, otherwise
.

One disadvantage of this approach is that if we think of β̂0[x0] as a function of x0, then this
function is not differentiable in x0.

4.3 L2-Regularized Nadaraya-Watson Estimator

A new approach is to define the L2-regularized Nadaraya-Watson estimator

β̂0[x0] =

∑n
i=1K(‖xi − x0‖/h) · yi

λ+
∑n

i=1K(‖xi − x0‖/h)
,

where λ > 0. If the kernel function is differentiable, then the function β̂[x0] is always differen-
tiable in x0.

The reason for this name is that under the M-estimator interpretation of Nadaraya-Watson esti-
mator, we have that

β̂[x0] = argmin
β0
‖W 1/2

h (Y − 1nβ0)‖22+λ‖β0‖22 = argmin
β0

n∑
i=1

K(‖xi−x0‖/h) · (yi−β0)2+λβ2
0 .

Lastly, note that we can also interpret this estimator as the mean with weights

{λ,K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)}

of points {0, y1, . . . , yn}.
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5 Partially Linear Model

Recall the following partially linear model

yi = x′iβ + g(zi) + εi = f(xi, zi; β) + εi,

where yi ∈ R, xi, β ∈ Rp, zi ∈ Rq, g(·) is an unknown nonlinear function, and εi are noise. The
data xi, zi are i.i.d., and the noise has conditionally zero mean E[εi|xi, zi] = 0 with unknown and
bounded conditional variance E[ε2i |xi, zi] = σ2(xi, zi). This model is known as a partially linear
model because it consists of a (parametric) linear part x′iβ and a nonparametric part g(zi). One
can think of the g(·) as an infinite-dimensional nuisance parameter, but in some situations this
function can be of interest.

5.1 Nonparametric Approach

Suppose we were to compute a LLR of this model at an arbitrary point x0, z0 within the support
of the xi,zi: β̂0[x0, z0]β̂[x0, z0]

η̂[x0, z0]

 = arg min
β0,β,η

∥∥∥∥∥∥W 1/2
h

Y − [1n X0 Z0

] β0β
η

∥∥∥∥∥∥
2

2

,

where X0 = X − x′01n, Z0 = Z − z′01n, and

Wh = diag

(
K

(
1

h

∥∥∥∥[x1z1
]
−
[
x0
z0

]∥∥∥∥) , . . . , K (1

h

∥∥∥∥[xnzn
]
−
[
x0
z0

]∥∥∥∥)) .
By noting that ∇xf = β, one estimate of the parametric coefficients is β̂ = β̂[x0, z0]. That
is, in principle, we can use a purely nonparametric approach to estimate the parameters of this
partially linear model. However, the rate of convergence will be Op(n

−2/(p+q+4)). This is much
slower than the parametric rate Op(1/

√
n).

5.2 Semiparametric Approach

Ideally, our estimates of β should converge at the parametric rate Op(1/
√
n), but the g(zi) term

causes difficulties in being able to achieve this. But if we could somehow subtract out this term,
then we would be able to estimate β at the parametric rate. This is the intuition behind the
semiparametric approach. Observe that

E[yi|zi] = E[x′iβ + g(zi) + εi|zi] = E[xi|zi]′β + g(zi),

and so

yi − E[yi|zi] = (x′iβ + g(zi) + εi)− E[xi|zi]′β − g(zi) = (xi − E[xi|zi])′β + εi.

5



Now if we define

Ŷ =

E[y1|z1]...
E[yn|zn]


and

X̂ =

E[x1|z1]
′

...
E[xn|zn]′


then we can define an estimator

β̂ = argmin
β
‖(Y − Ŷ )− (X − X̂)β‖22 = ((X − X̂)′(X − X̂))−1((X − X̂)′(Y − Ŷ )).

The only question is how can we compute E[xi|zi] and E[yi|zi]? It turns out that if we compute
those values with the trimmed version of the Nadaraya-Watson estimator, then the estimate β̂
converges at the parametric rate under reasonable technical conditions. Intuitively, we would
expect that we could alternatively use the L2-regularized Nadaraya-Watson estimator, but this
has not yet been proven to be the case.
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