
IEOR 265 – Lecture 6
Local Linear Regression

1 Local Linear Regression

Consider a regression model
y = f(x) + ε

in which f(·) is known to be highly nonlinear but of unknown structure. A nonparametric approach
is natural, and one nonparametric method is known as local linear regression (LLR). The idea of
this method is that if f(·) has sufficient smoothness (say twice-differentiable), then the model
will look linear in small regions of input-space. Suppose that we consider points in input space
nearby x0, then intuitively our model looks like

y = β0[x0] +

p∑
j=1

βj[x0] · (xj − xj0) + ε

for x near x0 (e.g., ‖x − x0‖ ≤ h for some small h > 0). The square brackets [x0] are used to
represent the fact that the value of β will vary for different values of x0.

The idea of a neighborhood of radius h is central to LLR. It is customary in statistics to call this
h the bandwidth. In this method, we select points within a radius of h from x0. Furthermore, we
can weight the points accordingly so that points closer to x0 are given more weight than those
points further from x0. To do this, we define a kernel function K(u) : R → R which has the
properties

1. Finite Support – K(u) = 0 for |u| ≥ 1;

2. Even Symmetry – K(u) = K(−u);

3. Positive Values – K(u) > 0 for |u| < 1.

A canonical example is the Epanechnikov kernel

K(u) =

{
3
4
(1− u2), for |u| < 1

0, otherwise

It turns out that the particular shape of the kernel function is not as important as the bandwidth
h. If we choose a large h, then the local linear assumption is not accurate. On the other hand,
if we choose a very small h, then the estimate will not be accurate because only a few data
points will be considered. It turns out that this tradeoff in the value of h is a manifestation of
the bias-variance tradeoff.
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Before we discuss this tradeoff in more detail, we describe the LLR. The idea is to perform a
weighted-variant of OLS by using a kernel function and a bandwidth h to provide the weighting.
The LLR estimate β̂0[x0], β̂[x0] is given by the minimizer to the following optimization[

β̂0[x0]

β̂[x0]

]
= arg min

β0,β

n∑
i=1

K(‖xi − x0‖/h) · (yi − β0 − (xi − x0)′β)2.

Now if we define a weighting matrix

Wh = diag (K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)) ,

then we can rewrite this optimization as[
β̂0[x0]

β̂[x0]

]
= arg min

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0
β

])∥∥∥∥2
2

,

where 1n is a real-valued vector of all ones and of length dimension n and X0 = X −x′01n. This
is identical to the OLS optimization, and so we can use that answer to conclude that[

β̂0[x0]

β̂[x0]

]
= (
[
1n X0

]′
Wh

[
1n X0

]
)−1(

[
1n X0

]′
WhY ).

2 Bias and Variance of LLR

Next, we describe the bias and variance of LLR. The heuristic derivations are more complicated,
and so we do not include them. It can be shown that the bias and variance of an LLR estimate is

bias(β̂0[x0]) = O(h2)

var(β̂0[x0]) = Op

(
1

nhd

)
,

where h is the bandwidth and d is the dimensionality of xi (i.e., xi ∈ Rd). Note that we have
described the bias and variance for the estimate of β0 and not that of β. The bias and variance
for the estimate of β are slightly different. The interesting aspect is that these expressions show
how the choice of the bandwidth h affects bias and variance. A large bandwidth means that we
have high bias and low variance, whereas a small bandwidth means that we have a low bias but
high variance.

When implementing LLR, we need to pick the bandwidth h in some optimal sense that trades off
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these competing effects. We can, at least analytically, pick the asymptotic rate of h:

h = arg min
h

(
c1h

4 + c2
1

nhd

)
⇒ c̃1h

3 + c̃2
1

nhd+1
= 0

⇒ c1h
d+4 = c2

1

n
⇒ h = O(n−1/(d+4)).

The resulting optimal rate is that

β0 = β +Op(n
−2/(d+4)).

Note that this is slower than the rate of OLS (i.e, Op(1/
√
n)) for any d ≥ 1, and is an example

of the statistical penalty that occurs when using nonparametric methods. The situation is in fact
even worse: There is a “curse of dimensionality” that occurs, because the convergence rate gets
exponentially worse as the ambient dimension d increases. It turns out that if the model has
additional structure, then one can improve upon this “curse of dimensionality” and get better
rates of convergence when using LLR.

3 Manifold Structure

Imagine a generalization of the collinearity model previously considered. Specifically, assume that
the xi lie on an embedded submanifoldM with dimension d < p, where this manifold is unknown
a priori. Suppose that the system has model yi = f(xi) + εi, where f(·) is an unknown nonlinear
function. The reason that this situation is interesting is that the LLR estimate converged at
rate Op(n

−2/(p+4)), but if we knew the manifold then we could do a coordinate change into a
lower-dimensional space and then the LLR estimate would converge at rate Op(n

−2/(d+4)).

Even though this manifold is unknown, we could imagine that if we were able to somehow learn
this manifold and then incorporate this knowledge into our estimator, then we could achieve the
faster convergence rate. This is in fact the idea behind the nonparametric exterior derivative
estimator (NEDE), which is defined as[

β̂0[x0]

β̂[x0]

]
= arg min

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0
β

])∥∥∥∥2
2

+ λ‖Πβ‖22,

where X0 = X−x′01n, Π is a projection matrix that projects onto the (p−d) smallest eigenvectors
of the sample local covariance matrix 1

nhd+2X
′
0WhX0, and

Wh = diag (K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)) .

It can be shown that the error in this estimate converges at rate Op(n
−2/(d+4)), even though the

regression is being computed for coefficients that lie within a p-dimensional space. Furthermore,
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it can be shown that β̂[x0] is a consistent estimate of the exterior derivative of f at x0 (i.e.,
df |x0). This improved convergence rate can be very useful if d� p.

The idea of lower-dimensional structure either in a hyperplane or manifold context is an important
abstract structure. It is important because there are many methods that can exploit such structure
to provide improved estimation.

3.1 Collinearity and Sparsity

In some models, one might have both collinearity and sparsity. One approach to this situation is
the elastic net, which is

β̂ = arg min
β
‖Y −Xβ‖22 + λ‖β‖22 + µ‖β‖1.

An alternative approach might be the Lasso Exterior Derivative Estimator (LEDE) estimator

β̂ = arg min
β
‖Y −Xβ‖22 + λ‖Πβ‖22 + µ‖β‖1,

where Π is a projection matrix that projects onto the (p− d) smallest eigenvectors of the sample
covariance matrix 1

n
X ′X.

A further generalization of this idea is when there is manifold structure and sparsity: The Non-
parametric Lasso Exterior Derivative Estimator (NLEDE) estimator is[

β̂0[x0]

β̂[x0]

]
= arg min

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0
β

])∥∥∥∥2
2

+ λ‖Πβ‖22 + µ‖β‖1,

where X0 = X−x′01n, Π is a projection matrix that projects onto the (p−d) smallest eigenvectors
of the sample local covariance matrix 1

nhd+2X
′
0WhX0, and

Wh = diag (K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)) .
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