
IEOR 265 – Lecture 1
Convex Geometry

1 Classifying Regression Methods

Suppose we have a system in which an input (also known as predictors) x ∈ Rk gives an output
y ∈ R, and suppose there is a static relationship between x and y that is given by y = f(x) + ϵ,
where ϵ is zero mean noise with finite variance (i.e., E(ϵ) = 0 and var(ϵ) = σ2 < ∞). We will
also assume that ϵ is independent of x; otherwise our model has what is known as endogeneity,
which is a common topic of study in econometrics.

The process of modeling involves using measured data to identify the relationship between x and
y, meaning identify E[y|x] = f(x). This is a huge topic of inquiry, but in this course we will
categorize this regression problem into three classes:

1. Parametric Regression – The unknown function f(x) is characterized by a finite number
of parameters. It is common to think of f(x; β), where β ∈ Rp is a vector of unknown
parameters. The simplest example is a linear model, in which we have

f(x; β) =

p∑
j=1

βjx
j.

This approach is used when there is strong a priori knowledge about the structure of the
system (e.g., physics, biology, etc.).

2. Nonparametric Regression – The unknown function f(x) is characterized by an infinite
number of parameters. For instance, we might want to represent f(x) as an infinite
polynomial expansion

f(x) = β0 + β1x+ β2x
2 + . . . .

This approach is used when there is little a priori knowledge about the structure of the
system. Though it might seem that this approach is superior because it is more flexible
than parametric regression, it turns out that one must pay a statistical penalty because of
the need to estimate a greater number of parameters.

3. Semiparametric Regression – The unknown function f(x) is characterized by a component
with a finite number of parameters and another component with an infinite number of
parameters. In some cases, the infinite number of parameters are known as nuisance
parameters; however, in other cases this infinite component might have useful information
in and of itself. A classic example is a partially linear model:

f(x) =
m∑
j=1

βjx
j + g(xm+1, . . . , xk).
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Here, the g(xm+1, . . . , xk) is represented non-parametrically, and the
∑m

j=1 βjx
j term is

the parametric component.

This categorization is quite crude because in some problems the classes can blend into each
other. For instance, high-dimensional parametric regression can be thought of as nonparametric
regression. The key problem in regression is that of regularization. The idea of regularization is to
improve the statistical properties of estimates by imposing additional structure onto the model.

2 Ordinary Least Squares

Suppose that we have pairs of independent measurements (xi, yi) for i = 1, . . . , n, where xi ∈ Rp

and yi ∈ R, and that the system is described by a linear model

yi =

p∑
j=1

βjx
j
i + ϵi = x′

iβ + ϵi.

Ordinary least squares (OLS) is a method to estimate the unknown parameters β ∈ Rp given
our n measurements. Because the yi are noisy measurements (whereas the xi are not noisy in
this model), the intuitive idea is to choose an estimate β̂ ∈ Rp which minimizes the difference
between the measured yi and the estimated ŷi = x′

iβ̂.

There are a number of ways that we could characterize this difference. For mathematical and
computational reasons, a popular choice is the squared loss: This difference is quantified as∑

i(yi − ŷi)
2, and the resulting problem of choosing β̂ to minimize this difference can be cast as

the following (unconstrained) optimization problem:

β̂ = argmin
β

n∑
i=1

(yi − x′
iβ)

2.

For notational convenience, we will define a matrix X ∈ Rn×p and a vector Y ∈ Rn such that
the i-th row of X is x′

i and the i-th row of Y is yi. With this notation, the OLS problem can be
written as

β̂ = argmin
β

∥Y −Xβ∥22,

where ∥ · ∥2 is the usual L2-norm. (Recall that for a vector v ∈ Rk the L2-norm is ∥v∥2 =√
(v1)2 + . . .+ (vk)2.)

Now given this notation, we can solve the above defined optimization problem. Because the
problem is unconstrained, setting the gradient of the objective to zero and solving the resulting
algebraic equation will give the solution. For notational convenience, we will use the function
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J(X,Y ; β) to refer to the objective of the above optimization problem. Computing its gradient
gives

∇βJ = 2X ′(Y −Xβ̂) = 0 ⇒ X ′Xβ̂ = X ′Y

⇒ β̂ = (X ′X)−1(X ′Y ).

This is the OLS estimate of β for the linear model. In some cases, the solution is written as
β̂ = ( 1

n
X ′X)−1( 1

n
X ′Y ). The reason for this will be discussed in future lectures.

2.1 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

β̂ = argmin
β

∥Y −Xβ∥22,

where the variables are as defined before. The basic tension in the problem above is that in
general no exact solution exists to the linear equation

Y = Xβ;

otherwise we could use linear algebra to compute β, and this value would be a minimizer to the
optimization problem written above.

Though no exact solution exists to Y = Xβ, an interesting question to ask is whether there is
some related linear equation for which an exact solution exists. Because the noise is in Y and
not X, we can imagine that we would like to pick some Ŷ such that Ŷ = Xβ̂ has an exact
solution. Recall from linear algebra, that this is equivalent to asking that Ŷ ∈ R(X) (i.e., Ŷ is
in the range space of X). Now if we think of Ŷ as true signal, then we can decompose Y as

Y = Ŷ +∆Y,

where ∆Y represents orthogonal noise. Because – from Fredholm’s theorem in linear algebra –
we know that the range space of X is orthogonal to the null space of X ′ (i.e., R(X) ⊥ N (X ′)),
it must be the case that ∆Y ∈ N (X ′) since we defined Ŷ such that Ŷ ∈ R(X). As a result,
premultiplying Y = Ŷ +∆Y by X ′ gives

X ′Y = X ′Ŷ +X ′∆Y = X ′Ŷ .

The intuition is that premultiplying by X ′ removes the noise component. And because Ŷ ∈ R(X)
and Ŷ = Xβ̂, we must have that

X ′Y = X ′Ŷ = X ′Xβ̂.

Solving this gives β̂ = (X ′X)−1(X ′Y ), which is our regular equation for the OLS estimate.
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2.2 Challenges with High Dimensionality

In modern data sets, it is common for p (number of predictors/parameters) to be the same order
of magnitude (or even larger) than n (number of measurements). This is highly problematic
because the statistical error of OLS is linearly increasing in p, and inversely proportional to n.
(More formally, the mean squared error of OLS scales as Op(p/n); this notation will be explained
later in the course.) Consequently, OLS is not statistically well-behaved in this modern high-
dimensional setting. To be able to develop estimators that work in this setting, we are required
to first better understand the geometery of high-dimensional convex bodies.

3 High-Dimensional Convex Bodies

Recall that K ⊆ Rp is a convex set if for all x, y ∈ K and λ ∈ [0, 1] it holds that

λ · x+ (1− λ) · y ∈ K.

In low dimensions, the volume of convex bodies is distributed evenly. A representative example
is the two-dimensional polytope show below.

The situation is markedly different in high dimensions. Consider a convex body K, which is a
convex set in Rp that is (i) closed, (ii) bounded, and (iii) has a nonempty interior. Furthermore,
suppose K is isotropic, meaning that if a random variable X is uniformly distributed on K then
it has the properties that

E(X) = 0

E(XX ′) = I,

where I is the p×p identity matrix. It turns out that majority of the volume of K is concentrated
about the ball with radius

√
p. More formally, for every t ≥ 1 we have

P(∥X∥2 > t
√
p) ≤ exp(−ct

√
p).
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Moreover, the majority of volume of K is found in a thin shell around the ball of radius
√
p: For

every ϵ ∈ (0, 1), we have

P(|∥X∥2 −
√
p| > ϵ

√
p) ≤ C exp(−cϵ3p1/2).

Note that in these two above results, C, c are positive absolute constants. As a result, a more
intuitive picture of a convex body in high dimensions is

This “hyperbolic” picture is more intuitive because it shows that the convex body can be char-
acterized as consisting of a bulk and outliers, where (i) the bulk of volume is concentrated in
a ball of small radius, (ii) the outliers have large radius, and (iiii) the volume of the outliers is
exponentially decreasing away from the bulk.

4 More Reading

The material in the last section follows that of

R. Vershynin (2014) Estimation in high dimensions: a geometric perspective, in Sampling Theory,
a Renaissance. Springer. To appear.

More details about high-dimensional convex bodies can be found in this book chapter and its
accompanying references.
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