
IEOR 165 – Lecture 8
Regularization

1 Maximum A Posteriori (MAP) Estimation

The MLE framework consisted of formulating an optimization problem in which the objective was
the likelihood (as parametrized by the unknown model parameters) of the measured data, and
the minimizer of the optimization problem gave our estimate. This is not the only framework for
estimation, and it is interesting to consider alternative approaches.

An alternative approach uses a Bayesian framework. This approach begins similarly to MLE:
Suppose we have a parameterized pdf f(X|θ) and iid measurements Xi for i = 1, . . . , n, from
this parameterized distribution. The new element of this framework is that we also assume that
there is a probability distribution of the unknown parameters. So for instance, we have a pdf g(θ)
for the unknown parameter. From a conceptual standpoint, the interpretation is that we have
some prior knowledge about what the possible values of the unknown parameters might be.

The pdf of the unknown parameter g(θ) is known as a prior distribution because it represents our
knowledge about the model parameters without knowing any data. Now the idea is that because
we have data Xi, we can use this to update our knowledge about the model parameters. In
particular, we can define the posterior distribution

f(θ|X) =
f(X|θ)g(θ)∫

u∈Θ
f(X|u)g(u)

,

which describes our knowledge about the model parameters θ conditioned on the data we have
observed. This equation is merely an application of Bayes’s Theorem.

One idea to estimate the parameters is to compute the maximum a posteriori (MAP) estimate,
which is defined by the minimizer to the following optimization problem

max
{
f(θ|X)

∣∣ θ ∈ Θ
}
,

and the interpretation is that our estimate is the value that maximizes the posterior likelihood (of
the parameter given the data measured). One interesting observation that is useful in practice is
to note that the denominator

∫
u∈Θ

f(X|u)g(u) in the equation defining the posterior distribution
is a constant. As a result, we can equivalently compute the MAP estimate by solving

max
{
f(X|θ)g(θ)

∣∣ θ ∈ Θ
}
.

This is a considerable simplification because computing the integral
∫
u∈Θ

f(X|u)g(u) can be very
hard in general.
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1.1 Example: Least Squares with Gaussian Prior

Consider the linear model
yi = x′iβ + εi,

where εi ∼ N (0, σ2). And assume the prior distribution of the coefficients are iid Gaussians:

βj ∼ N (0, 1/
√

2λ).

Q: Write the MAP estimate as a quadratic program (QP).

A: We begin by noting the MAP estimate is given by

β̂ = arg max exp
(∑n

i=1−(yi − x′iβ)2/(2σ2)
)∏p

j=1 exp
(
− λβ2

j

)
.

Using the same trick as in MLE, we instead minimize the negative logarithm:

β̂ = arg min
∑n

i=1(yi − x′iβ)2/(2σ2) +
∑p

j=1 λβ
2
j .

And this is the same as solving

β̂ = arg min ‖Y −Xβ‖2
2 + λ̃‖β‖2

2,

where λ̃ = 2λσ2. This is a QP because it can be rewritten as

β̂ = arg min β′(X ′X + λ̃I)β − 2Y ′Xβ.

1.2 Example: Least Squares with Laplacian Prior

We begin with the same linear model

yi = x′iβ + εi,

where εi ∼ N (0, σ2). And assume the prior distribution of the coefficients are iid Laplacians with
zero mean and scale parameter 1/λ. Recall that the pdf of this Laplacian distribution is

f(u) =
1

2b
exp

(
− |u− µ|/b

)
.

Q: Write the MAP estimate as a quadratic program (QP).

A: We begin by noting the MAP estimate is given by

β̂ = arg max exp
(∑n

i=1−(yi − x′iβ)2/(2σ2)
)∏p

j=1 exp
(
− λ|βj|

)
.
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Using the same trick as in MLE, we instead minimize the negative logarithm:

β̂ = arg min
∑n

i=1(yi − x′iβ)2/(2σ2) +
∑p

j=1 λ|βj|.

And this is the same as solving

β̂ = arg min ‖Y −Xβ‖2
2 + λ̃‖β‖1,

where λ̃ = 2λσ2. This is a QP because it can be rewritten as

β̂ = arg min β′X ′Xβ − 2Y ′Xβ + λ̃ · t
s.t. −mj ≤ βj ≤ mj, ∀j = 1, . . . , p∑p

j=1 mj ≤ t.

2 Regularization

Regularization is the process of purposely increasing the bias of an estimator so that the overall
estimation error decreases. There are different types of regularization that are available to us
depending on what underlying structure may be present in the system that we are trying to model.
Incorporating appropriate regularization is arguably the most important step in modeling, and the
key problem is to understand what kinds of additional structure can be imposed onto the model.

3 L2 Regularization

We have already seen the example of L2 regularization imposed on the OLS method:

β̂ = arg min ‖Y −Xβ‖2
2 + λ‖β‖2

2.

As discussed in the previous lecture, this approach can be interpreted as providing (proportional)
statistical shrinkage. This shrinks the estimated coefficients of the linear model towards zero,
in exchange for a reduction in variance of the estimated coefficients. As shown above, L2
regularization for the OLS model also has a Bayesian interpretation.

3.1 Example: Collinearity

Collinearity is an issue that frequently arises when trying to construct linear models from data.
Suppose we would like to build a linear model that has an output of mortality rate and inputs of

• age

• salary

• blood pressure
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• cholesterol level

• weight

• height

• body fat percentage

Constructing this model is more difficult than it might initially seem. The reason is that the
inputs are expected to display collinearity, meaning that the inputs themselves are correlated to
each other. For instance, body fat percentage will be correlated to weight and height. Similarly,
blood pressure will be correlated to age and weight.

It turns out that this kind of structure causes the estimation error of OLS to increase significantly.
The reasons are technical but can be interpreted either in the language of differential geometry
or in the context of numerical conditioning. Given the challenges faced by such collinearity, it is
interesting to consider how to improve estimation error of OLS. One approach that works well in
practice is to incorporate L2 regularization into OLS.

4 L1 Regularization

Another type of regularization is known as L1 regularization, and it consists of solving the following
optimization problem

β̂ = arg min ‖Y −Xβ‖2
2 + λ‖β‖1,

where λ is a tuning parameter. This approach is also called Lasso regression, and is a popular
technique in machine learning. As shown above, this method has a Bayesian interpretation. It
also has a ”bias-variance tradeoff” interpretation.

4.1 Soft Thresholding Interpretation

The Lasso regression estimate has an important interpretation in the bias-variance context. For
simplicity, consider the one-dimensional case in which

∑n
i=1 x

2
i = 1. In this case, the objective of

the Lasso regression is

β̂ = arg min
n∑
i=1

(yi − xi · β)2 + λ|β|

= arg min
n∑
i=1

y2
i − 2yixiβ + x2

iβ
2 + λ|β|

= arg min(
∑n

i=1−2yixi)β + (
∑n

i=1 x
2
i )β

2 + λ|β|+
∑n

i=1 y
2
i

= arg min(
∑n

i=1−2yixi)β + β2 + λ|β|+
∑n

i=1 y
2
i .
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Note that even though the objective is not differentiable, we can break the problem into three
cases. In the first case, β > 0 and so setting the derivative equal to zero gives

2β + (
∑n

i=1−2yixi) + λ = 0⇒ β̂ =
∑n

i=1 yixi − λ/2.

In the second case, βj < 0 and so setting the derivative equal to zero gives

2β + (
∑n

i=1−2yixi)− λ = 0⇒ β̂ =
∑n

i=1 yixi + λ/2.

In the third case, βj = 0.

For reference, we also compute the OLS solution in this special case. If we define β̂0 to be the
OLS solution, then a similar calculation to the one shown above gives that β̂0 =

∑n
i=1 yixi. And

so comparing to OLS solution to the Lasso regression solution, we have that

β̂ =


β̂0 + λ/2, if β̂ = β̂0 + λ/2 < 0

β̂0 − λ/2, if β̂ = β̂0 − λ/2 > 0

0, otherwise

This can be interpreted as a soft thresholding phenomenon, and it is another approach to balancing
the bias-variance tradeoff.

4.2 Dual Formulation

Consider the following optimization problem

β̂ = arg min
β
{‖Y −Xβ‖2

2 : φ(β) ≤ t},

where φ : Rp → R is a penalty function with the properties that it is convex, continuous,
φ(0) = 0, and φ(u) > 0 for u 6= 0. It turns out that there exists λ such that the minimizer to
the above optimization is identical to the minimizer of the following optimization

β̂λ = arg min
β
‖Y −Xβ‖2

2 + λφ(β).

This relationship can be established using duality theory from optimization, but that material is
covered in other courses.

However, this result is useful because it has a graphical interpretation that provides additional
insight. Visualizing the constrained form of the estimator provides intuition into why L2 regu-
larization does not lead to sparsity, whereas L1 regularization does. By sparsity, we mean that
most of the estimated linear coefficients β will be equal to zero. This is important because zero
coefficients indicate no relationship between the corresponding input variables and the output
variable. Furthermore, in many applications we can have an extremely large number of inputs
(several thousand inputs is not uncommon), and we may not know a priori which inputs are rel-
evant. The Lasso regression method is one approach that helps choose relevant input variables,
and is popular in machine learning for this reason.
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5 Elastic Net

In some situations, we might have collinearity of the input variables and a large number of input
variables. In these cases, we can combine L1 and L2 regularization and solve

β̂ = arg min ‖Y −Xβ‖2
2 + λ‖β‖2

2 + µ‖β‖1.

This method is known as the elastic net.
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