IEOR 165 — Lecture 20
Multiple Comparisons

1 Example: Comparing Service Rates

Consider a situation in which there are four healthcare providers performing triage for an emer-
gency room in a hospital. Triage is the process of evaluating the severity of a patient’s condition
and then assigning a priority for treatment. Each provider works one at a time. This is an essential
element of emergency rooms because some patients will have a relatively benign condition such
as a cold whereas other patients may be suffering from something more urgent like a heart attack.

It is common for a hospital to have a standardized procedure for triage in order to improve service
rates and quality. Now suppose that three of the healthcare providers feel that the standardized
procedure is suboptimal. As a result, these three have each made individual adjustments to the
standardized triage procedure. There is concern that these deviations are resulting in higher
mortality rates. To check this, mortality rates for each healthcare provider over multiple dates
were collected.

A salient question to ask is what testing procedure to use. For instance, the average mortality
rates for each pair of healthcare providers could be compared. This would entail a total of six
comparisons of the average means. However, actually performing multiple tests is non-optimal
because the use of multiple testing adjustments (like the Bonferroni correction of the Holm-
Bonferroni method) are conservative approaches to controlling the familywise error rate; they are
conservative in the sense that the adjusted p-value will be larger than the true p-value would be if
we were able to exactly take into account the multiple tests. What would be better is a method
to simultaneously compare the four means. This would be better because it would comprise a
single test, and so there would be no conservativeness introduced by performing a correction for
multiple tests.

2 One-Way Analysis of Variance (ANOVA)

The idea of ANOVA is to simultaneously compare the mean (or median) of different groups,
under an assumption that the distributions of measurements from each group are identical. The
situation is analogous to two-sample location tests in which the means (or medians) of two groups
are compared to each other. Depending on the distributional assumptions in the null hypothesis,
different tests are available.



2.1 F-Test

Similar to the case with the t¢-test, an F-test is any test in which the test statistic follows an
F-distribution. Recall that the notation U ~ x*(d) indicates that U has a y?-distribution with
d degrees of freedom, and let U; ~ x*(d;) and U, ~ x*(d2) be independent random variables.

Then the random variable defined as
B Uy /dy

- Usy/d,
has an F-distribution with d;, ds > 0 degrees of freedom.

Suppose our null hypothesis is
Hy:pyr=po=...=pand o =05 =...04, where X7 ~ N (p;,07) for j=1,...k

Let n; be the number of measurements taken from the j-th group, and suppose NV = Z?Zl n;.
Next, define the sample averages

X1 3 X7
njizl !

1

j=1 i=1

The difference between these two quantities is that X is the sample average of data from the
j-th group, while X is the sample average of the data from all the groups combined.

With these defintions, we can now definite the test statistic we will use for the F-test. In
particular, suppose we let our test statistic be given by

MSG
MSE’

where

1 St~ =
MSG = m an(Xj — X)2
7j=1
MSE= 1 3 3 (X7 - X7)?
N — k44 ' '
=1 =1

Here, M SG refers to the mean square between groups, and MSFE is the mean squared error.
The intuition is that M .SG quantifies the amount of variation between groups, whereas MSFE
quantifies the amount of variation within groups. Under the null hypothesis, we would expect
that the variation between and within groups should be equal. So in essence, we compute the
p-value by looking for how far the test statistic ' deviates from the value (of approximately)
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one, and this is computed using the F-distribution. Note that there is no notion of one-sided or
two-sided here; the test statistic can only be positive and there is only one direction to test.

Just as was done for the ¢-test, some work shows that M SG is independent of MSE. More
work shows that MSG/o? ~ x?(k—1)/(k—1) and MSE/o* ~ x*(N —k)/(N — k). Thus, it
must be that the test statistic M/ SG/MSE is described by an F-distribution with d; = k — 1
and ds = N — k degrees of freedom. To compute the p-value, we can use a table or a calculator
to determine

where F' is a random variable with F-distribution with d; = k — 1 and do = N — k degrees of
freedom.

2.2 Example: Diet and Lifespan

Q: The following data relate to the ages at death of a certain species of rats that were fed 1 of
3 types of diets. Thirty rats of a type having a short life span of an average of 17.9 months were
randomly divided into 3 groups of 10 each. The sample means and variances of ages at death
(in months) are:

Very Low Calorie | Moderate Calorie | High Calorie
Sample mean 22.4 16.8 13.7
Sample variance 24.0 23.2 17.1

Test the hypothesis, at the 5 percent level of significance, that the mean lifetime of a rat is not
affected by its diet.

A: k=3, ni,ng,n3 =10, and N = ny + nys + n3 = 30.

Hy : p1 = o = p3 and o = 03 = 03, where X7 ~ N (p;,0%) for j =1,2,3
Since S7 = 5 >0 (Xyy — X)?, for i =1,2,3. It follows

k  n
MSE = ﬁZZ(XU—Z-)?

i=1 j=1
Lk
= N_k Z(ni —1)5;
=1
1
= m((lo —1)-240+4+(10—-1)-23.2+(10—-1)-17.1)

— 578.7/27 = 21.43



— 1 — ~N ~N\ 2
MSG = +— gnl(Xz X)
1
= 37 10-[(224 - 17.63)> + (16.8 — 17.63)* + (13.7 — 17.63)?)
= 388.9/2=194.5
MSG 1945
TS5 =%rsE =~ 213 = 207

p— value = P(Fk—l,N—k > TS) = P(F2727 > 9072) = 0.00097 < 0.05

So we reject H.

2.3 Kruskal-Wallis Test

Recall that the Mann-Whitney U test is a nonparametric hypothesis test for comparing two
groups when their distributions are not Gaussian. The Kruskal-Wallis test is the extension of the
Mann-Whitney U test to the situation with more than two groups. Here, the null hypothesis is

Hy : median(X') = ... = median(X*) and fy;(u) = fxa(u) for j # q.

For simplicity, we will assume that no measured value occurs more than once in the data. The
test works as follows. First, the data from every group is placed into a single list that is sorted
into ascending order, and a rank from 1 to N(= Z§:1 n;) is assigned to each data point in the
single list. Next, the test statistic

k —i =
2o (M =)

K= (N - 1) k n; i >
Zj:l >l —=7)?

where 77 is the rank of the i-th data point from the j-th group, and
A
= er
7=
RIS
F=—" I = (N +1)/2.
T=N ;i_ln (N +1)/

The quantity 77 is the sample average of ranks of the j-th group, and 7 is the sample average of
ranks of all the groups combined; however, here we can pre-compute the sample average of ranks
of all the groups combined because it is known that the ranks consecutively range from 1 to V.



The intuition of this test is that the test statistic K looks similar to the test statistic for the
F-test, but here we are looking at a quantity that looks like the variation in rank between groups
divided by the variation in rank within groups. A lot of algebra shows that

12 .
K=———=) ()’ = 3(N +1),
which approximately looks like a x?(k — 1) distribution when the n; are large.

3 Multiple Testing with Multiple Comparisons

Suppose that a multiple comparison is performed, and the null hypothesis that each group is
identical is rejected. It is natural to ask which of the pairs of groups are different, but this
necessitates comparing all pairs of groups. And doing so introduces a multiple testing situation.
There are many ways to do corrections for the multiple tests, but one way is to compute p;;-values
for each pairwise comparison (say k(k — 1)/2 pairwise tests) and a p-value for the ANOVA test.
If p < «/2, then the null hypothesis that all the groups are identical is rejected. And then, a
multiple testing procedure (e.g., the Bonferroni correction or the Holm-Bonferroni method) to
ensure the familywise error rate of the pairwise comparisions is below a//2. Note that this ensures
that the entire procedure ensures the familywise error rate is below «, because

FWER =P(p < a/2U pairwise errors < «/2)
< P(p < a/2) + P(pairwise errors < a/2) = o /2 + a/2.

Note that we could have an infinite number of procedures by varying the condition to p < ya
and FW ERpairwise < (1 —7y)a for v € (0,1); however, the value v should not depend upon the
value p otherwise the derivation above may not hold. In other words, v needs to be selected prior
to conducting the tests.
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