
IEOR 165 – Lecture 14
Holt-Winters Algorithm

1 Affine Discrete Time Model

An affine discrete time model can be written as

xt+1 = Axt +But + k,

where xt ∈ Rn is a vector of states, ut ∈ Rq is a vector of inputs, and A ∈ Rn×n, B ∈ Rn×q,
k ∈ Rn are matrices/vectors of suitably-defined size. Such models can be used for forecasting.
For instance, the state xt might represent the demand of a basket of goods at time t, and ut
might be economic indicators or other determinants of demand for each item in the basket of
goods.

The benefit of these models is that identifying the models and then using them for forecasting is
a relatively simple process, consisting of the following steps:

1. Historical data (ut, xt) for t = −n,−n + 1, . . . , 0 is used to estimate the A,B, k of the
model.

2. Different scenarios for the future inputs ut are generated.

3. The forecast is generated by recursively computing

x1 = Ax0 +Bu0 + k

x2 = Ax1 +Bu1 + k

...

and so on.

In some cases, we may be able to use domain knowledge to exactly specify some of the future
inputs.

1.1 Parameter Identification

Identifying the A,B, k is relatively simple because we can pose the problem as a linear regression.
In particular, if we let Aj, Bj, kj denote the j-th row of A,B, k respectively, then we can estimate
the model parameters by solving the following least squares problemsÂj

B̂j

k̂j

 = argmin

∥∥∥∥∥∥Y j −X
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2
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where we define

Y j =


xj−n+1

xj−n+2
...

xj0

 X =


x′−n u′−n 1
x′−n+1 u′−n+1 1

...
x′−1 u′−1 1

 .

1.2 Example: Weight Modeling

Suppose we would like to forecast the weight of an individual. To help construct a temporal
model, we have asked the individual to weigh their body weight every morning. Suppose the
measured weight data (in units of pounds) is

{w0, w1, . . .} = {138, 137.9, 137.3, 137.5, 137.1, 137.0}

Q: Identify the parameters of an affine discrete time model given by

wn+1 = α · wn + k.

Here, the parameter k encompasses the impact of the basal metabolic rate (BMR), average daily
caloric intake each data, and average physical activity in a day.

A: For our predictors, we use the data:

xi = {138, 137.9, 137.3, 137.5, 137.1}

For our response, we use the data

yi = {137.9, 137.3, 137.5, 137.1, 137.0}

To solve the linear regression problem, we compute

x = 137.56

y = 137.36

xy = 18895.31

x2 = 18922.87.

Thus, our estimates are

α̂ =
xy − x · y
x2 − (x)2

=
18895.31− 137.56 · 137.36

18922.87− (137.56)2
= 0.59

k̂ = y − α̂ · x = 137.36− 0.59 · 135.56 = 57.4.

Our final estimated model is
xn+1 = 0.59 · xn + 57.4.
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2 Additive Holt-Winters Algorithm

Suppose our state is xt ∈ R, and that we have observed x1, . . . , xn as data. If the future state
follows a constant plus trend model, then the prediction h time steps into the future is given by

x̂t+h = ât + b̂t · h,

where ât represents the constant term and b̂t represents the trend. For instance, a prediction one
time step into the future is given by

x̂t+1 = ât + b̂t.

The next question is how to compute these ât, b̂t values.

Now suppose that the model describing the ât, b̂t for t = 2, . . . , (n− 1) is given by

ât+1 = αxt + (1− α)(ât + b̂t)

b̂t+1 = β(ât+1 − ât) + (1− β)b̂t,

with initial conditions

â2 = x2

b̂2 = x2 − x1.

Note that these xt are measured data, and so we can recursively compute â3, then b̂3, then â4,
and so on. The parameters α, β can be chosen to minimize

∑n
t=3(xt − x̂t|t−1)

2, where x̂t|t−1
denotes the prediction at time t using data until time t− 1 (i.e., x̂t|t−1 = ât−1 + b̂t−1).

2.1 Seasonal Algorithm

Suppose the state also displays seasonality with period d. Then if the future state follows a
constant plus trend plus seasonality model, then the prediction h time steps into the future is
given by

x̂t+h = ât + b̂t · h+ ĉt+h,

where ât represents the constant term, b̂t represents the trend, and ĉt represents the seasonal
component. Because ĉt is periodic with period d, we have that

ĉt+h = ĉ(t+h) mod d.

To compute these values, we use the recursive equations

ât+1 = α(xt+1 − ĉt+1−d) + (1− α)(ât + b̂t)

b̂t+1 = β(ât+1 − ât) + (1− β)b̂t
ĉt+1 = γ(xt+1)− ât+1) + (1− γ)ĉt+1−d.
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for t = (d+ 2), . . . , n. We use the initial conditions

âd+1 = xd+1

b̂d+1 = (xd+1 − x1)/d
ĉj = xj − (x1 + b̂d+1(j − 1)), for j = 1, . . . , (d+ 1).

2.2 Kalman Filtering

These approaches are special cases of a more general approach known as Kalman Filtering using
the internal model principal. One of the benefits of this more general approach is that we
can easily incorporate multiple seasonality components occuring at different rates (i.e., monthly,
weekly, daily, etc.). This approach is covered in other courses at Berkeley.

3 More Information and References

The material in Section 2 follows that of the course textbook “Introduction to Time Series and
Forecasting” by Brockwell and Davis.
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