IEOR 165 — Lecture 13
Markov Processes

1 Definition

A Markov process is a process in which the probability of being in a future state conditioned on
the present state and past states is equal to the probability of being in a future state conditioned
only on the present state. There are certain key features of Markov processes that can be used
to classify different models:

1.1 State Space

The space to which the states of the model belong can be used to classify different models. The
state describes the current configuration of the system, and it captures the important aspects
of the system. The fact that the future evolution of a Markov process only depends on the
current state is important because it means that for these classes of models the state completely
characterizes the configuration of the system. In other words, there are no hidden variables that
influence the evolution of the system. The notion of hidden states is particularly relevant in
physics to quantum mechanics, where the question of whether the stochastic nature of quantum
mechanics is due to hidden variables has been deeply studied.

Discrete state spaces are those in which the states are represented by a discrete set of objects.
For example, we could describe a doctor in a hospital with a discrete state space in which some
states could correspond to

e Meeting Patient

e Performing Procedure
e Idling

e Administration

Depending on the level of analysis, we might have more or less states to describe the system.

Continuous state spaces are those in which the states are represented by a continuous set of
objects. An example is position of a ball we have thrown in space. The position of the ball can
occupy different continuous values.

Hybrid state spaces are those in which the states are represented by a combination of discrete
and continuous sets. For example, consider a bouncing ball. We need to use a discrete state to
describe if the ball is in the air or if the ball is bouncing on the ground. Furthermore, we need
continuous states to describe the position and velocity of the ball.



1.2 Initial Conditions

To define the evolution of a Markov process, we need to specify an initial condition, which
represent the states of the system at the “start”. The initial condition can be stochastic or
deterministic. For instance, we can specify a distribution of states the system “starts” at.

1.3 Time

Two common classes of models are discrete-time and continuous-time models. In most Markov
processes, time is a privileged variable, meaning that it is interpreted as a clock that keeps track
of the duration between events; however, this is not the case in general. For instance, special
and general relativity models from physics drop time from this privileged position in a precise way.

Discrete-time models are those in which time increases in discrete increments. Starting from
t = 0, time advances as t =t 4+ 1, and actions in this class of models occur at every increment.
Because of the discrete nature of time in this class of models, the time variable ¢ is often used
as an index for the state-variables. So if, say, the state is x € RP?, then the value of the state at
time ¢ is denoted x; or z[t]. Because of the discrete nature of time, another convention is to use
the variables n or k to denote time.

Continuous-time models are those in which time continuously increases. Starting from ¢ = 0,
time advances as %t = 1, and actions in this class of models can occur at any point in time.
Because of the continuous nature of time in this class of models, the time variable is used as the
input into a function describing the states. So if the state is x, then the value of the state at
time ¢ is denoted as x(t).

These are not the only classes of models for temporal evolution. For instance, hybrid-time models
are those in which time increases in both discrete and continuous increments. These types of
models occur when describing certain semi-autonomous, robotic, or embedded systems.

2 Discrete Time Markov Chains

A Markov chain is a Markov process in which the state space is discrete. Vertices are used as
an abstraction for different quantities/states of the system. For instance, we can use vertices to
represent the number of people waiting in the queue for a service system. The time in this class
of models can be continuous, discrete, or hybrid.

Because of the discrete nature of the state space, the system is represented by a weighted di-
rected graph G = (V, E), where the vertices v; € V represent states of the system and the edges
ei; € E denotes an edge from v; going towards v;. Furthermore, every vertex v; has a self-loop,
meaning an edge e; € E for all v; € V. By convention, these self-loops are not drawn because



they have a fundamentally different characteristic.

The edges e;; € E for 7 # j have strictly positive weights w;;. For a discrete-time Markov chain,
the weight w;; will represent the probability of a transition to state v; occurring when the system
is currently at state z;. In particular, if edge e;; has weight w;; then this means that we have the
following probability of transitioning states for all v;,v; € V' (even for v; = v;):

P[%H = ’Uj’.lﬁt = Ui] = Wij.

2.1 MLE Estimator

Suppose we have data that consists of x; € V for t = 0,...,n. The question we would like to
answer is how can we estimate the w;; weights? One possible approach is maximum likelihood
estimation. Before we define the likelihood, it is useful to define the following values
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These values count the number of transitions between vertices v; to vertices v; that were observed
in the measured data. Next, note that the likelihood is given by

P(x; for t =0,...,n) = P(xg) - Pla1|zo] - Plas|z1, 0] - - - PlXn|Tpn_1,- - -, X0]
= P(zy) - Plx1|zo] - Plea|zy] - - - Plog|2n_1]

= P(wy) - 1:[ Plws|z:]

= Bao) T[]}

v vy

We have used the Markov property in going from the first to second line, and the third line comes
by definition of the IV;; values. Consequently, the MLE is given by

max {P(l’o) . HH’LUSI” Zwij = 1,sz}.

v v
The solution does not depend on IP(), and so we can drop this term. To simplify the calculation,
we can take the negative log-likelihood. As a result, we solve

min{ — ZZNU log w;; Zwij = 1,V1}i}.
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2.2 Example: Weather Forecasting

Q: A model for weather forecasting that works surprisingly well is to assume the weather on a
given day only depends on the weather on the previous day. This model is then a discrete time
Markov chain if we restrict the categories of weather to: sunny, rainy or cloudy. Suppose the
data comparing the weather “today” and “tomorrow” for a given location can be summarized as
follows:

tomorrow sunny tomorrow rainy tomorrow cloudy
today sunny 286 123 165
today rainy 128 333 256
today cloudy 245 255 189

Find the maximum likelihood estimates of the transition probabilities.

A: We first construct a graph with three vertices, and we assign v; to “sunny”, vy to “rainy”,
and v3 to “cloudy”. Next, note we use the notation p;; to represent the transition probability
from v; to v;. (This notation is slightly different from above, where we used w;; to represent this

equanity. Then, the MLE is given by:

~ ni1 286 286

P11 = = = 0.498
N1 + N9 + N3 286 + 123 + 165 574
123 123

Pz = 2 —0.214
N1 + N9 + 13 286 + 123 4+ 165 574
165 _ 165

Prs = s —0.288
N1 + N9 + 13 286 + 123 4+ 165 574
128 128

P = o = 0.179
No1 + Moy + DR 128 + 333 + 256 717
333 ~ 333

oz = 122 - — 0.464
No1 + Moy + T3 128 + 333 + 256 717
256 256

Pos = ez = — 0.357
No1 + Moy + N3 128 + 333 + 256 717
245 245

Pa = 1131 - — 0.356
N3l + N3o + N33 245 + 255 + 189 689
255 255

Py = 132 — 0.370
: 189 189

P = mas —0.274
N3 + N3g + N33 245 + 255 + 189 689
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