
IEOR 165 – Lecture 12
Support Vector Machines

1 Classification

1.1 Motivating Example

As a motivating example, suppose we have measurements from people of different health markers
(e.g., blood pressure, resting heart rate, weight) and would like to predict whether or not the
person smokes. In order to construct such a model, we need to use data from some set of
individuals. Here, we can aggregate the different health markers for the i-th person into a vector
xi ∈ Rp. Similarly, we can assign a label to the i-th person. If this person smokes, we label them
with yi = −1; and if this person does not smoke, then we label them with yi = 1.

1.2 Abstract Setting

In principle, this is a regression problem where the inputs are xi and the outputs are yi. However,
there is additional structure in this specific class of regression problems. This structure is that the
outputs take on a small discrete set of values. And the most basic situation is when the outputs
are yi ∈ {−1, 1}. Because these outputs are representative of labels, the numeric value is not
important as long as the labels are self-consistent. For instance, we could specify yi ∈ {0, 1} or
yi ∈ {A,B}. However, it is mathematically convenient to use the labels yi ∈ {−1, 1}.

The problem of classification consists of the following setup: We are given a set of measurements
xi ∈ Rp from the i-th object, along with a corresponding yi ∈ {−1, 1} that gives a label on
the object. And we would like to construct a model that takes xi as inputs and generates yi as
outputs. The more general case when the labels are yi ∈ {0, 1, 2, . . . , C} is known as multiclass
classification.

2 Linear Support Vector Machine

Consider the following nonlinear model:

yi = sign(x′iβ + β0) + εi,

where yi ∈ {−1, 1}, xi, β ∈ Rp, β0 ∈ R, and εi is noise. We can think of the yi as labels of each
xi, and the εi noise represents (potential) mislabeling of each xi. The intuitive picture is that
x′iβ + β0 = 0 defines a hyperplane that separates Rp into two parts, in which points on one side
of the hyperplane are labeled 1 while points on the other side are −1. Also note that there is a
normalization question because x′i(γ · β) + β0 = 0 defines the same hyperplane for any γ > 0.

1



The key to identifying models is to observe that the boundaries of the half-spaces

x′iβ + β0 ≤ −1
x′iβ + β0 ≥ 1

are parallel to the separating hyperplane x′iβ + β0 = 0, and the distance between these two
half-spaces is 2/‖β‖. So by appropriately choosing β, we can make their boundaries arbitrarily
close (or far) to x′iβ + β0 = 0. Observe that for noiseless data, we would have

yi(x
′
iβ + β0) ≥ 1.

So we could define our estimate by the coefficients that maximize the distance between the half-
spaces (which is equivalent to minimizing ‖β̂‖ since the distance is 2/‖β̂‖). This would be given
by [

β̂0
β̂

]
= argmin

β0,β
‖β‖2

s.t. yi(x
′
iβ + β0) ≥ 1, ∀i.

This optimization problem can be solved efficiently on a computer because it is a special case of
quadratic programming (QP).

The above formulation assumes there is no noise. But if there is noise, then we could modify the
optimization problem to [

β̂0
β̂

]
= argmin

β0,β
‖β‖2 + λ

n∑
i=1

ui

s.t. yi(x
′
iβ + β0) ≥ 1− ui,∀i

ui ≥ 0

The interpretation is that ui captures errors in labels. If there are no errors, then ui = 0, and if
there is high error then ui is high. The term λ

∑n
i=1 ui denotes that we would like to pick our

parameters to tradeoff maximizing the distance between half-spaces with minimizing the amount
of errors. There is another interpretation of

yi(x
′
iβ + β0) ≥ 1− ui

as a soft constraint. This interpretation is that we would ideally like to satisfy the constraint
yi(x

′
iβ+β0) ≥ 1, but we cannot do so because of noise. And so the soft constraint interpretation

is that ui gives a measure of the constraint violation of yi(x
′
iβ + β0) ≥ 1 required to make the

optimization problem feasible.

2



3 Feature Selection

An important aspect of modeling is feature selection. The idea is that, in many cases, the
relationship between the inputs xi and the outputs yi might be some complex nonlinear function

yi = f(xi) + εi.

However, there may exist some nonlinear transformation of the inputs

zi = g(xi)

which makes the relationship between the inputs zi and outputs yi “simple”. Choosing these
nonlinear transformations requires use of either domain knowledge or trial-and-error engineering.

As an example, consider the following raw data on the left below. In this figure, the predictors
are x, y, the “ex”-marks are points with label -1, and the “circle”-marks are points with label
+1. A linear hyperplane cannot separate the two sets of points. However, suppose we add a new
(third) predictor that is equal to x2 + y2. This is shown in the fighre on the right below. With
this new predictor, we can now separate the data points using a linear hyperplane.

Feature selection is relevant to classification because it is often the case that the points cor-
responding to the classes cannot be separated by a hyperplane. However, it can be the case
that a linear hyperplane can separate the data after a nonlinear transformation is applied to the
input data. In machine learning, it is common to use the “kernel trick” to implicitly define these
nonlinear transformations.

3



4 Kernel Trick

The first thing to observe is that using duality theory of convex programming, we can equivalently
solve the formulation of the linear SVM by solving the following optimization problem:

α̂ = argmin
α

∑n
i=1 αi −

1
2

∑n
i=1

∑n
j=1 αiαjyiyjx

′
ixj

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ λ,∀i

This problem is also a QP and can be solved efficiently on a computer. And we can recover β̂0, β̂
by computing

β̂ =
n∑
i=1

αiyixi

β̂0 = yk − β̂′xk, for any k s.t. 0 < αk < λ.

The key observation here is that we only need to know the inner product between two input
vectors xi and xj in order to be able to compute the parameters of the SVM.

And so the kernel trick is that instead of computing a nonlinear transformation of the inputs
zi = g(xi) and then computing inner products

z′izj = g(xi)
′g(xj),

we will instead directly define the inner product

z′izj = K(xi, xj)

where the K(·, ·) is a Mercer kernel function. A Mercer kernel function K(·, ·) means this function
is positive semidefinite. So the resulting optimization problem to compute a Kernel SVM is

α̂ = argmin
α

∑n
i=1 αi −

1
2

∑n
i=1

∑n
j=1 αiαjyiyj ·K(xi, xj)

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ λ,∀i

This will still be a QP and efficiently solvable on a computer.

It is interesting to summarize some common kernel choices.

Kernel Equation

Polynomial of Degree d K(xi, xj) = (x′ixj)
d

Polynomial of Degree Up To d K(xi, xj) = (1 + x′ixj)
d

Gaussian K(xi, xj) = exp(−‖xi − xj‖2/2σ2)

4



The choice of kernel depends on domain knowledge or trial-and-error.

The final question is how can we make predictions if we compute an SVM using the kernel trick?
Because a new prediction is given by

sign(z′β̂ + β̂0)

where

β̂ =
n∑
i=1

α̂iyizi

β̂0 = yk − β̂′zk, for any k s.t. 0 < α̂k < λ,

we can again use the kernel trick to write the predictions as

sign

(
n∑
i=1

α̂iK(x, xi) + yk −
n∑
i=1

α̂iyiK(xk, xi)

)
, for any k s.t. 0 < α̂k < λ.

5


	Classification
	Motivating Example
	Abstract Setting

	Linear Support Vector Machine
	Feature Selection
	Kernel Trick

