IEOR 165 — Lecture 1
Probability Review

1 Defining Probability

A probability space (2, F,P) consists of three elements:
e A sample space (2 is the set of all possible outcomes.
e The o-algebra F is a set of events, where an event is a set of outcomes.

e The measure P is a function that gives the probability of an event. This function PP satisfies
certain properties, including: P(A) > 0 for an event A, P(Q) =1, and P(A; U Ay U...) =
P(A;) +P(As) + ... for any countable collection A, As, ... of mutually exclusive events.

1.1 Example: Flipping a Coin
Suppose we flip a coin two times. Then the sample space is
Q= {HH, HT,TH,TT}.
The o-algebra F is given by the power set of {2, meaning that
F = {@,{HH},{HT},{TH},{TT},{HH, HT},{HH,TH},
{HH,TT},{HT,TH} {HT,TT} {TH,TT},

{HH, HT,THY,{HH,HT,TT},{HH,TH,TT},
{HT,TH,TT},{HH, HT,TH, TT}}.

One possible measure PP is given by the function defined as

P(HH) = P(HT) = P(TH) = P(TT) i (1)

Recall that an outcome is an element of €2, while an event is an element of F.

1.2 Consequences of Definition

Some useful consequences of the definition of probability are:

e For a sample space Q2 = {01,...,0,} in which each outcome o; is equally likely, it holds
that P(o;) =1/nforalli=1,...,n.

e P(A) =1—P(A), where A denotes the complement of event A.
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e For any two events A and B, P(AU B) =P(A) + P(B) — P(AN B).
o If AC B, then P(A) < P(B).

e Consider a finite collection of mutually exclusive events By, ..., B,, such that B; U ... U
B,, = Q and P(B;) > 0. For any event A, we have P(A) =>"7"  P(AN By).

2 Conditional Probability

The conditional probability of A given B is defined as

P(AN B)
PA|B] = ———=
AIB) = ~5 5
Some useful consequences of this definition are:

e Law of Total Probability: Consider a finite collection of mutually exclusive events By, ..., B,,
such that By U...U B,, = Q and P(B;) > 0. For any event A, we have

P(A) = >")-, P[A|By]P(By).

e Bayes's Theorem: It holds that

PIA|BIP(B)

PIBIA] =~ 5

2.1 Example: Flipping a Coin

Suppose we flip a coin two times. Then by definition,

P(HT N {HT,TH}) P(HT) T 1
PIHT | {HT,TH}| = = — 4 _
[ | {HT, 4 P({HT, TH}) P({HT,TH}) % 2
And an example of applying Bayes's Theorem is
P[HT | {HT,TH}|-P({HT,TH z-3

P(HT)

W=

3 Independence

Two events A; and A, are defined to be independent if and only if P(A; N Ay) = P(A;)P(A,).
Multiple events Ay, As, ..., A,, are mutually independent if and only if for every subset of events

{Ai,.. . A, } C{A, ..., ALl



the following holds:
]P)( Z:IAik) = HZ:lp(Alk)

Multiple events A;, A, ..., A,, are pairwise independent if and only if every pair of events is
independent, meaning P(A4, N A;) = P(A,)P(Ax) for all distinct pairs of indices n, k. Note
that pairwise independence does not always imply mutual independence! Lastly, an important
property is that if A and B are independent and P(B) > 0, then P[A|B] = P(A).

3.1 Example: Flipping a Coin
The events {HH, HT} and {HT,TT?} are independent because

1
4

P({HH,HT} N {HT,TT}) = P({HT})

: % —P({HH,HT}) - P({HT,TT}).

DO | —

In other words, the measure IP is defined such that the result of the first coin flip does not impact
the result of the second coin flip.

However, the events {HH, HT'} and {T'T'} are not independent because

P({HH,HT} N {TT}) =P®) =0 # - - - = P{HH, HT}) - P{TT}).

N —
>~ =

Intuitively, if the event { H H, HT'} is observed, then this means the first flip is H. As a result, we
know that {77} cannot also occur. Restated, observing { HH, HT'} provides information about
the chances of observing {T'T'}. In contrast, observing { HH, HT'} does not provide information
about the chances of observing {HT,TT}.

4 Random Variables
A random variable is a function X (w) : 2 — B that maps the sample space (2 to a subset of the

real numbers B C R, with the property that the set {w : X (w) € b} = X 1(b) is an event for
every b € B. The cumulative distribution function (cdf) of a random variable X is defined by

Fx(u) =Pw: X(w) <u).
The probability density function (pdf) of a random variable X is any function fx(u) such that

P(X € A)= /Afx(u)du,

for any well-behaved set A.



4.1 Example: Flipping a Coin
Suppose we flip a coin two times. One example of a random variable is the function
X (w) = number of heads in w.

The cdf is given by

0, ifu<O
L fo<u<1
Fy(uy={1 7=
x(w) Sifl<u<?
1, ifu>2

The pdf is given by

fX(u):i-5(u—0)+%-5(u—1)+}1-(5(u—2),

where 0(+) is the Dirac delta function. Formally, the Dirac delta function is defined as a measure

such that
1, f0e A
5(A) _ , | S .
0, otherwise

Informally, the Dirac delta function is a function defined such that

) {o, 0
400, ifu=0

and

5 Expectation

The expectation of g(X), where X is a random variable and ¢(-) is a function, is given by

E(g(X)) = / o(u) fx (u)du.

Two important cases are the mean

p(X) =B = [ ufs(u)d
and variance
7(X) = B(X ~ ) = [ (= ) Fxlu)du
Two useful properties are that if A\, k are constants, then

EAX + k) =\E(X) + &
o*(AX + k) = \20*(X).



5.1 Example: Flipping a Coin
Suppose we flip a coin two times, and consider the random variable
X (w) = number of heads in w.

Recall that the pdf is given by

fx(u) = -5(u—0)+%-5(u—1)+}1-5(u—2).

1 =

The mean is
1 1 1 1 1 1
/qu(u)du:/u-(1-5(11—0)—1—5-5(u—1)+1-5(u—2))du:Z-0+§~1+Z~2:

The variance is

/(u—,u)zfx(u)du:/(u—l)z-(i-é(u—0)+%~5(u—l)+i-5(u—2))du:

-(0—1)2+%-(1—1)24&-(2—1)2—%.

=~ =

6 Common Distributions

6.1 Uniform Distribution

A random variable X with uniform distribution over support [a,b] is denoted by X ~ U(a,b),
and it is the distribution with pdf

fx(u) =

0, otherwise

{ﬁ, if u € [a,b]
The mean is 1 = (a + b)/2, and the variance is 0% = (b — a)?/12.

6.2 Bernoulli Distribution

A random variable X with a Bernoulli distribution with parameter p has the pdf:P(X =1) =p
and P(X =0) =1 —p. The mean is ;= p, and the variance is 0% = p(1 — p).

6.3 Binomial Distribution

A random variable X with a binomial distribution with n trials and success probability p has the
pdf

P(X = k) = (Z) PP —p)"*, for k € Z.

This distribution gives the probability of having k successes (choosing the value 1) after running
n trials of a Bernoulli distribution. The mean is 1 = np, and the variance is 02 = np(1 — p).
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6.4 Gaussian/Normal Distribution

A random variable X with Guassian/normal distribution and mean p and variance o is denoted
by X ~ N (p,0?), and it is the distribution with pdf

Folu) = — eXp<_(u_u>2)-

V2mo? 20
For a set of iid (mutually independent and identically distributed) Gaussian random variables
X1, Xo, ..., X, ~ N(u,0?%), consider any linear combination of the random variables.

S=MX1+ 20X+ ...+ X,

The mean of the linear combination is
BS) -3 o
i=1
and the variance of the linear combination is
o?(S) =o*- i)\f
i=1
Note that in the special case where \; = 1/n (which is also called a sample average):
X=1/n- i X,
i=1
we have that E(X) = E(X) and 0?(X) = ¢%/n (which also implies that lim,, ., 0%(X) = 0).

6.5 Chi-Squared Distribution

A random variable X with chi-squared distribution and k-degrees of freedom is denoted by
X ~ x?(k), and it is the distribution of the random variable defined by

k
2.2
i=1
where Z; ~ N'(0,1). The mean is E(X) = k, and the variance is 0%(X) = 2k.

6.6 Exponential Distribution

A random variable X with exponential distribution is denoted by X ~ £()), where A > 0 is the
rate, and it is the distribution with pdf

Aexp(—=Au), ifu>0,
Fr() = p(—Au) 0,
0 otherwise



The cdf is given by

Fy(u) 1 —exp(—XAu), ifu>0,
u g
X 0 otherwise

and so P(X > u) = exp(—Au) for u > 0. The mean is = 5, and the variance is 0* = 3. One
of the most important aspects of an exponential distribution is that is satisfies the memoryless
property:

PX > s+t X > t] =P(X > s),for all values of s,¢ > 0.

6.7 Poisson Distribution

A random variable X with a Poission distribution with parameter A has a pdf

/\k
P(X =k)= Fexp(—)\), for k € Z.

The mean is = ), and the variance is 02 = \.
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