$\begin{array}{ll} \textbf{IEOR 165-Midterm}\\ \textbf{March 14, 2017} \end{array}$

Name:	
Overall:	/50

Instructions:

- 1. Show your intermediate steps.
- 2. You are allowed a single 8.5x11 inch note sheet.
- 3. Calculators are allowed.

1	/10
2	/10
3	/10
4	/10
5	/10

1. Suppose we have measured stress and deflection: $s_i = \{10, 11, 12, 13, 14\}$ and $d_i = \{7, 8, 3, 10, 15\}$. Estimate the parameters of a linear model $d = m \cdot s + b$. (10 points)

Using linear regression: $\overline{s} = 12$ $\overline{d} = 8.6$ $\overline{sd} = 106.8$ $\overline{s^2} = 146$ $\hat{m} = (\overline{sd} - \overline{s} \cdot \overline{d})/(\overline{s^2} - \overline{s}^2) = (106.8 - 12 \cdot 8.6)/(146 - 12^2) = 1.8$ $\hat{b} = \overline{d} - \hat{m} \cdot \overline{s} = 8.6 - 1.8 \cdot 12 = -13$ $d = 1.8 \cdot s - 13$ 2. Suppose we make iid measurements from a random variable X_i with exponential distribution with rate λ . Recall that the mean of an exponential distribution with rate λ is $1/\lambda$. If our measurements are $X_i = \{3, 1, 4, 9, 2\}$, then estimate λ . (10 points)

Using method of moments: $\mathbb{E}(X) = 1/\lambda \Rightarrow \lambda = 1/\mathbb{E}(X)$ $\hat{\lambda} = n/\sum_{i=1}^{n} X_i = 5/(3+1+4+9+2) = 0.2632$ 3. Suppose the relationship between a response y and predictor x is $k^y = \exp(bx)$. If we have iid data $x_i = \{1, 3, 4, 2, 4\}$ and $y_i = \{3, 1, 9, 10, 11\}$, then estimate k, b. (10 points)

Taking the logarithm: $y \log k = bx \Rightarrow y = (b/\log k)x$ Using the method of moments, $\mathbb{E}(y) = (b/\log k)\mathbb{E}(x)$ $\overline{y} = (3+1+9+10+11)/5 = 6.8000$ $\overline{x} = (1+3+4+2+4)/5 = 2.8000$ So our estimate of $b/\log k$ is $\overline{y}/\overline{x} = 6.8000/2.8000 = 2.43$

- 4. Suppose $X_i \sim \mathcal{N}(\mu, 1)$ for $i = 1, \ldots, n$ are iid random variables.
 - (a) Compute the MLE for μ . (5 points)

$$\begin{split} \hat{\mu} &= \arg \max \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp(-(X_i - \mu)^2/2) \\ \text{Taking the negative logarithm and discarding constants:} \\ \hat{\mu} &= \arg \min \sum_{i=1}^{n} (X_i - \mu)^2 \\ \text{Setting the derivative equal to zero gives:} \\ 2\sum_{i=1}^{n} (X_i - \mu) &= 0 \Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} \end{split}$$

(b) Suppose the prior for μ is a uniform distribution with support [a, b]. Compute the MAP for μ . (5 points)

The prior is
$$g(\mu) = \mathbf{1}(a \le \mu \le b)$$
. So the MAP is:
 $\hat{\mu} = \arg \max \mathbf{1}(a \le \mu \le b) \cdot \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp(-(X_i - \mu)^2/2)$
Taking the negative logarithm and discarding constants:
 $\hat{\mu} = \arg \min \sum_{i=1}^{n} (X_i - \mu)^2 + \begin{cases} +\infty, & \mu < a \text{ or } \mu > 0 \\ 0, & a \le \mu \le b \end{cases}$
This is equivalent to:
 $\hat{\mu} = \arg \min \{\sum_{i=1}^{n} (X_i - \mu)^2 \mid a \le \mu \le b\}$
Using the solution from part (a), we know the solution to the above problem is:
 $\hat{\mu} = \begin{cases} a, & \text{if } \overline{X} < a \\ \overline{X}, & \text{if } a \le \overline{X} \le b \\ b, & \text{if } \overline{X} > b \end{cases}$

5. Suppose $X \sim \mathcal{N}(\mu, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu, \sigma_y^2)$ are independent. Compute an unbiased estimate of the form Z = aX + bY that minimizes the expected squared loss. (10 points) Hint: Recall that $Z \sim \mathcal{N}(a\mu + b\mu, a^2\sigma_x^2 + b^2\sigma_y^2)$.

An unbiased estimate has $a\mu + b\mu = \mu$ or a + b = 1 or a = 1 - b. Using the bias-variance decomposition, we have: $\mathbb{E}((\mu - Z)^2) = (a\mu + b\mu - \mu)^2 + a^2\sigma_x^2 + b^2\sigma_y^2 = (1 - b)^2\sigma_x^2 + b^2\sigma_y^2$ Taking the derivative with respect to b and setting to zero gives: $-2(1 - b)\sigma_x^2 + 2b\sigma_y^2 = 0 \Rightarrow b = \sigma_x^2/(\sigma_x^2 + \sigma_y^2)$ So $a = \sigma_y^2/(\sigma_x^2 + \sigma_y^2)$