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Homework 2

Due: Thursday, March 2

Question 1. Let X1,..., X, be iid from the pdf
f(@) =02z 0<z 0<60<o0

Find the MLE of 6.

Solution. The likelihood function is given as
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So taking the log we get that the log likelihood is:
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Taking the derivative and setting to zero we get that émle =
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Question 2. Let Xi,..., X, be iid with pmf
N
o) = (

)em—e)N—x, 0<z<N, 0<6<1
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Where N is a known constant. Find the MLE of 6.

Solution. The likelihood function is:
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Taking the log we get that the log likelihood is:
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Taking the derivative and setting to zero we get that Oimie = %

Question 3. The chlorine residual (C) in a swimming pool at various times after being cleaned
(T) is as given:



Chlorine Residual

Time (hr) (pt/million)
2 1.92
4 1.55
6 1.47
8 1.33
10 1.43
12 1.08

Assume the following relationship
C ~ aexp(—bT)

What would you predict for the chlorine residual 15 hours after a cleaning?
Solution. Take log on both sides:
log C = loga — bT

So we derive a linear model (in approximation) with y = logC and = = T. Let fy = loga and
(1 = —b, we get the OLS estimates as

Bo~0.69 [ ~ —0.046
So at T =15,
log(C(15)) = 0.69 — 0.046 x 15 = 0.0
Thus C(15) = €Y = 1.0.
Question 4. Assume we have one observation X drawn from a Bernoulli distribution with unknown
parameter p. p itself follows a beta distribution with shape parameters o and . Show that the

posterior distribution is beta and find its mean and variance (E[p|X] and Var(p|X))
Hint 1: The pdf of a beat distribution with parameters «, S is:
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Where B(a,b) = (a=Db-D! s the beta function. The mean is —2 and the variance is ——28
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Solution. By the Bayes’ rule, we have
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Normalizing this distribution we get that:
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So using the formulas from the hint we see that E[p|X]| = and the variance is (



Question 5. Find the Maximum a posteriori estimate (MAP) of p in Question 4.

Solution. Taking the log of the posterior we see that:

Inf(p|X)=(@@+a—-1)lnp+(B—2)In(l —p) —InB(z+a,8—x+1)
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Taking the derivative and setting it equal to zero we see that py,qp =



