Department of Industrial Engineering & Operations Research

IEOR 165 (Spring 2017)

Homework 2

Due: Thursday, March 2

Question 1. Let X_1, \ldots, X_n be iid from the pdf

$$f(x) = \theta^2 x e^{-\theta x}, \quad 0 < x, \ 0 < \theta < \infty$$

Find the MLE of θ .

Question 2. Let X_1, \ldots, X_n be iid with pmf

$$f_{\theta}(x) = \binom{N}{x} \theta^x (1-\theta)^{N-x}, \quad 0 \le x \le N, \quad 0 \le \theta \le 1$$

Where N is a known constant. Find the MLE of θ .

Question 3. The chlorine residual (C) in a swimming pool at various times after being cleaned (T) is as given:

Time (hr)	Chlorine Residual (pt/million)
2	1.92
4	1.55
6	1.47
8	1.33
10	1.43
12	1.08

Assume the following relationship

$$C \approx a \exp(-bT)$$

What would you predict for the chlorine residual 15 hours after a cleaning?

Question 4. Assume we have one observation X drawn from a Bernoulli distribution with unknown parameter p. p itself follows a beta distribution with shape parameters α and β . Show that the posterior distribution is beta and find its mean and variance $(\mathbb{E}[p|X] \text{ and } Var(p|X))$ Hint : The p.d.f. of a beat distribution with parameters α, β is:

$$f(y) = \frac{y^{\alpha - 1}(1 - y)^{\beta - 1}}{\mathbf{B}(\alpha, \beta)} \tag{1}$$

Where $\mathbf{B}(a,b) = \frac{(a-1)!(b-1)!}{(a+b-1)!}$ is the beta function. The mean is $\frac{\alpha}{\alpha+\beta}$ and the variance is $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ Question 5. Find the Maximum *a posteriori* estimate (MAP) of *p* in Question 4.