
IEOR 165 – Lecture 7
Bias-Variance Tradeoff

1 Bias-Variance Tradeoff

Consider the case of parametric regression with β ∈ R, and suppose we would like to analyze
the error of the estimate β̂ in comparison to the true parameter β. There are a number of ways
that we could characterize this error. For mathematical and computational reasons, a popular
choice is the squared loss: The error between the estimate and the true parameter is quantified
as E

(
(β̂ − β)2

)
.

By doing some algebra, we can better characterize the nature of this error measure. In particular,
we have that

E
(
(β̂ − β)2

)
= E

(
(β̂ − E(β̂) + E(β̂)− β)2

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2E

(
(E(β̂)− β)(β̂ − E(β̂)

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2(E(β̂)− β)(E

(
β̂)− E(β̂))

= E
(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
.

The term E
(
(β̂−E(β̂))2

)
is clearly the variance of the estimate β̂. The other term E

(
(E(β̂)−β)2

)
measures how far away the “best” estimate is from the true value, and it is common to define
bias(β̂) = E

(
E(β̂)− β

)
. With this notation, we have that

E
(
(β̂ − β)2

)
= (bias(β̂))2 + var(β̂).

This equation states that the expected estimation error (as measured by the squared loss) is equal
to the bias-squared plus the variance, and in fact there is a tradeoff between these two aspects
in an estimate.

It is worth making three comments:

1. The first is that if bias(β̂) = E
(
E(β̂)−β

)
= 0, then the estimate β̂ is said to be unbiased.

2. Second, this bias-variance tradeoff exists for vector-valued parameters β ∈ Rp, for non-
parametric estimates, and other models.

3. Lastly, the term overfit is sometimes used to refer to an model with low bias but extremely
high variance.
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2 Example: Estimating Variance

Suppose Xi ∼ N (µ, σ2) for i = 1, . . . , n are iid random variables, where µ, σ2 are both unknown.
There are two commonly used estimators for the variance:

s2 =
1

n− 1

n∑
i=1

(Xi −X)2

σ̂2 =
1

n

n∑
i=1

(Xi −X)2 = n−1
n
s2.

Though these two estimators look similar, they are quite different and have different uses. The
estimator s2 is used in hypothesis testing, whereas the estimator σ̂2 is the MLE estimator for
variance.

The first comparison we make is the expectation of the two estimators. In particular, observe
that

E(s2) = E
(

1
n−1

∑n
i=1(Xi −X)2

)
= 1

n−1E
(∑n

i=1(X
2
i − 2XiX +X

2
)
)

= 1
n−1

(
E
(∑n

i=1X
2
i

)
− 2E

(∑n
i=1XiX

)
+ E

(∑n
i=1X

2
)
))

Examining the second term, note that∑n
i=1

(
XiX

)
= 1

n

∑n
i=1

(
Xi

∑n
j=1Xj

)
= 1

n

(∑n
i=1X

2
i +

∑
j 6=iXiXj

)
.

Hence, we have

E
(∑n

i=1

(
XiX

))
= E

(
1
n

(∑n
i=1X

2
i +

∑
j 6=iXiXj

))
= 1

n
·
(
nE(X2) + (n− 1)E(X)2

)
.

Examining the third term, note that∑n
i=1X

2
= n ·

(
1
n

∑n
j=1Xj

)2
= 1

n

(∑n
j=1X

2
j +

∑n
j=1

∑
k 6=j XjXk

)
.

Hence, we have

E
(∑n

i=1X
2
)
= E(X2) + (n− 1)E(X)2.

Returning to the above expression for E(s2), we have

E(s2) = 1
n−1

(
nE(X2)− 2E(X2)− 2(n− 1)E(X)2 + E(X2) + (n− 1)E(X)2

)
= 1

n−1

(
(n− 1)E(X2)− (n− 1)E(X)2

)
= E(X2)− E(X)2 = σ2.
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As a result, we also have that

E(σ̂2) = E
(
n−1
n
· s2
)
n−1
n
σ2.

In this example, we would say that s2 is an unbiased estimate of the variance because

bias(s2) = E
(
E(s2)− σ2

)
= E

(
σ2 − σ2

)
= 0.

However, the σ̂2 is not an unbiased estimate of the variance because

bias(σ̂2) = E
(
E(σ̂2)− σ2

)
= E

(
n−1
n
σ2 − σ2

)
= σ2/n.

It is tempting to say that s2 is a better estimate of the variance than σ̂2 becuase the former is
unbiased and the later is biased. However, lets examine the situation more closely. In particular,
suppose we compute the variance of both estimators. From the definition of the χ2 distribution,
we know that s2 ∼ σ2χ2(n− 1)/n− 1, where χ2(n− 1) denotes a χ2 distribution with (n− 1)
degrees of freedom. The variance of a χ2(n− 1) distribution is 2(n− 1) by properties of the χ2

distribution. Hence, by properties of variance, we have that

var(s2) = 2σ4/(n− 1)

var(σ̂2) = 2n−1
n2 σ

4.

Since n2 > (n − 1)2, dividing by (n − 1)n2 gives the inequality that 1/(n − 1) > (n − 1)/n2.

This means that var(s2) > var(σ̂2): In words, the variance of σ̂2 is lower than the variance of s2.

Given that one estimate has lower bias and higher variance than the other, the natural question
to ask is which estimate has lower estimation error? Using the bias-variance tradeoff equation,
we have

E((s2 − σ2)2) = (bias(s2))2 + var(s2) = 02 + 2σ4/(n− 1) = 2σ4/(n− 1)

E((σ̂2 − σ2)2) = (bias(σ̂2))2 + var(σ̂2) = σ4

n2 + 2n−1
n2 σ

4 = 2n−1
n2 σ4 = (2n−1)(n−1)

2n2 · 2σ4/(n− 1).

But note that (2n − 1)(n − 1) < 2(n − 1)(n − 1) < 2n2. As a result, (2n−1)(n−1)
2n2 < 1. This

means that
E((σ̂2 − σ2)2) ≤ E((s2 − σ2)2),

and so σ̂2 has lower estimation error than s2 when measuring error with the squared loss.

3 Stein’s Paradox

The situation of estimating variance for a Gaussian where a biased estimator has less estimation
error than an unbiased estimator is not an exceptional case. Rather, the general situation is that
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biased estimators have lower estimation errors. Such a conclusion holds in even surprising cases
such as the one described below.

Suppose we have jointly independent Xi ∼ N (µi, 1) for i = 1, . . . , n, with µi 6= µj for i 6= j. This
is a model where we have n measurements from Gaussians, where the mean of each measurement
is different. It is worth emphasizing that in this model we only have one measurement from each
different Gaussian. Now for this model, it is natural to consider the problem of estimating the
mean of each Gaussian. And the obvious choice is to use the estimator

µ̂ =
[
X1 X2 . . . Xn

]′
.

This is an obvious choice because

E(µ̂) =
[
µ1 µ2 . . . µn

]′
.

It is hard to imagine that any other estimator could do better (in terms of estimation error) than
this estimator, because (i) we only have one data point for each Gaussian, and (ii) each Gaussian
is jointly independent.

However, this is the exact conclusion from Stein’s paradox. It turns out that if n ≥ 3, then the
following James-Stein estimator

µ̂JS =
(
1− n− 2

‖µ̂‖22

)
· µ̂,

where µ̂ is as defined above, has strictly lower estimation error under the squared loss than that
of µ̂. This is paradoxical because the estimation of the means of Gaussians can be impacted by
the number of total Gaussians, even when the Gaussians are jointly independent. The intuition is
that as we try to jointly estimate more means, we can reduce the estimation error by purposely
adding some bias to the estimate. In this case, we bias the estimates of the means towards zero.
(This is sometimes called shrinkage in statistics, because we are shrinking the values towards
zero.) The error introduced by biasing the estimate is compensated by a greater reduction in the
variance of the estimate.

4 Proportional Shrinkage for OLS

Given that it can be the case that adding some bias can improve the estimation error, it is
interesting to consider how we can bias OLS estimates. Recall that the OLS estimate with data
(xi, yi) for xi ∈ Rp, yi ∈ R, i = 1, . . . , n is given by

β̂ = argmin ‖Y −Xβ‖22,

where the matrix X ∈ Rn×p and the vector Y ∈ Rn are such that the i-th row of X is x′i
and the i-th row of Y is yi. One popular approach to adding shrinkage to OLS is known as
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Ridge Regression, Tikhonov regularization, or L2-regularization. It is given by the solution to the
following optimization problem

β̂ = argmin ‖Y −Xβ‖22 + λ‖β‖22,

where λ ≥ 0 is a tuning parameter. (We will return to the question of how to choose the value
of λ in a future lecture.)

To understand why this method adds statistical shrinkage, consider the one-dimensional special
case where xi ∈ R. In this case, the estimate is given by

β̂ = argmin
n∑
i=1

(yi − xi · β)2 + λβ2

= argmin
n∑
i=1

y2i − 2yixiβ + x2iβ
2 + λβ2

= argmin(
∑n

i=1−2yixi)β + (λ+
∑n

i=1 x
2
i )β

2 +
∑n

i=1 y
2
i

Next, setting the derivative of the objective equal to zero gives

dJ

dβ
= (
∑n

i=1−2yixi) + 2(λ+
∑n

i=1 x
2
i )β = 0⇒ β̂ = (

∑n
i=1 yixi)/(λ+

∑n
i=1 x

2
i ).

When λ = 0, this is simply the OLS estimate. If λ > 0, then the denominator of the estimate
is larger; hence, the estimate will have a smaller absolute value (i.e., it will shrink towards zero).
If we can choose a good value of λ, then the estimate will have lower estimation error. We will
consider how to choose the value of λ in a future lecture.
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