
IEOR 165 – Lecture 6
Maximum Likelihood Estimation

1 Motivating Problem

Suppose we are working for a grocery store, and we have decided to model service time of an
individual using the express lane (for 10 items or less) with an exponential distribution. An
exponential service time is a common assumption in basic queuing theory models. Recall that:
A random variable X with exponential distribution is denoted by X ∼ E(λ), where λ > 0 is
the rate; in our context, the rate is better understood to be the service rate. The exponential
distribution has pdf

fX(u) =

{
λ exp(−λu), if u ≥ 0,

0 otherwise
.

In our motivating problem, suppose the data Xi for i = 1, . . . , n are assumed to be iid measure-
ments of the service time.

1.1 Method of Moments Estimator

A first idea is to use the method of moments estimator, which we derived in the second lecture.
The intuition behind the method of moments estimator is that the mean of an exponential
distribution is 1/λ, and so we estimate the service rate using the equation

λ̂ =
( 1

n

n∑
i=1

Xi

)−1
.

This is justified by the law of large numbers, which states that the sample average converges to
the expectation as we get more data. And since the service rate is assumed to be λ > 0 in the
definition of an exponential random variable, it turns out that the inverse of the sample average
will converge to the service rate λ. The potential weakness of this approach is that though it will
eventually give us the correct answer, we are not using information we know about the underlying
distribution of the data; it may be possible to get a more accurate estimate of the service rate
using less data with a more sophisticated approach.

1.2 Alternative Approach

We first define a parametric distribution Pθ with pdf fθ(u), to be a distribution that depends on
a vector of parameters θ ∈ Rp. Observe that the notation is slightly different here, in that we
use a subscript θ to denote the parameters in the pdf. We have already seen three examples of
a parametric distribution:
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• X ∼ N (θ1, θ2), where θ1 is an unknown mean of the Gaussian and θ2 is the unknown
variance of the Gaussian;

• X ∼ E(θ1), where θ1 is the rate parameter of the exponential distribution.

• X has a gamma distribution, which has a pdf of

f(θ,k)(u) =
1

Γ(k)θk
uk−1 exp(−u/θ),

where Γ(·) is the Gamma function, and θ, k are the parameters of this distribution.

We define the likelihood function for a parametric distribution Pθ with pdf fθ(u) as the substitution
of measured data xi for i = 1, . . . , n into the joint pdf for the random variables Xi for i = 1, . . . , n.
However, when the Xi are iid, the joint pdf simplifies into the product of the individual pdf of
each random variable Xi. More precisely, the likelihood function is given by

L(θ) =
n∏
i=1

fθ(xi).

One alternative idea for constructing an estimator is to choose the value of θ that maximizes this
likelihood. In order to be able to solve such likelihood maximization problems, we have to first
discuss general optimization problems.

2 Nonlinear Programming

Consider the following optimization problem (P):

min f(x)

s.t. x ∈ Rn

gi(x) ≤ 0,∀i = 1, . . . ,m

hi(x) = 0,∀i = 1, . . . , k

where f(x), gi(x), hi(x) are continuously differentiable functions. We call the function f(x) the
objective, and we define the feasible set X as

X = {x ∈ Rn : gi(x) ≤ 0 ∀i = 1, . . . ,m ∧ hi(x) = 0 ∀i = 1, . . . , k}.

Note that this formulation also incorporates maximization problems such as max{f(x) | x ∈ X}
through rewriting the problem as min{−f(x) | x ∈ X}.
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2.1 Unconstrained Optimization

First consider the special case where f : R → R. When (P) does not have any constraints,
we know from calculus (specifically Fermat’s theorem) that the global minimum must occur at
points where either (i) the slope is zero f ′(x) = 0, (ii) at x = −∞, or (iii) at x = ∞. More
rigorously, the theorem states that if f ′(x) 6= 0 for x ∈ R, then this x is not a local minimum.
This result extends naturally to the multivariate case where f : Rn → R, by insteading looking
for points where the gradient is zero ∇f(x) = 0.

This result is useful because it gives one possible approach to solve (P) in the case where there
are no constraints: We can find all points where the gradient is zero, evaluate the function in the
limits as x tends to x = −∞, or x =∞, and then select the minimum amongst these points.

One natural question to ask is how can we extend this approach to the general case (P)? The
most general case is more complex than is needed for this class, and so we look at some special
cases of constrained optimization. In particular, we consider two types of convex optimization.

2.2 Convex Optimizaton

Convex optimization problems are a useful framework because these problems can often be solved
in polynomial time. Below, we discuss two common and important types of convex optimization
problems: linear programs (LP’s) and quadratic programs (QP’s). These two classes of prob-
lems are important because there exist many software packages that can numerically solve these
problems in polynomial time. An important point to note is that it is often the case that an
optimization problem does not originally look like an LP or a QP, but that it can be rewritten as
an LP or QP by rearranging the terms of the optimization problem.

2.2.1 Linear Programs

If f, gi, hi are affine functions (i.e., of the form c′x + d where x ∈ Rn is the input, c ∈ Rn is a
constant vector, and d ∈ R is a constant), then the optimization problem (P) is a linear program:

min c′x+ d

s.t. x ∈ Rn

g′ix+ ei ≤ 0,∀i = 1, . . . ,m

h′ix+ fi = 0,∀i = 1, . . . , k

2.2.2 Quadratic Programs

If (i) f is a convex quadratic function (i.e., of the form f(x) = x′Qx+ c′x+ d, where x ∈ Rn is
the input, Q ∈ Rn×n ≥ 0 is a positive semidefinite matrix, and gi, hi are affine functions), then

3



the optimization problem (P) is a quadratic program:

min x′Qx+ c′x+ d

s.t. x ∈ Rn

g′ix+ ei ≤ 0,∀i = 1, . . . ,m

h′ix+ fi = 0,∀i = 1, . . . , k

It is important that the matrix Q be positive semidefinite (i.e., Q = Q′ and x′Qx ≥ 0 for all
x ∈ Rn) because otherwise the optimization problem is NP-hard if Q is not positive semidefinite.

3 Maximum Likelihood Estimation

The idea of maximum likelihood estimation (MLE) is to generate an estimate of some unknown
parameters by solving the following optimization problem

maxL(θ) = max
n∏
i=1

fθ(xi).

The MLE approach is best explained by considering some examples.

3.1 Example: Service Rate of Exponential Distribution

To get a better understanding of how this approach works, consider the case of using MLE to
estimate the service rate of an exponential. The likelihood is

L(λ) =
∏n

i=1

(
λ exp(−λxi)

)
= λn · exp(−λ

∑n
i=1 xi).

And we would like to solve the problem

max λn · exp(−λ
∑n

i=1 xi).

Next, suppose we find the points at which the gradient is zero:

nλn−1 exp(−λ
∑n

i=1 xi) +−λn exp(−λ
∑n

i=1 xi) ·
∑n

i=1 xi = 0.

Now assuming λ > 0, we can simplify this to

n+−λ ·
∑n

i=1 xi = 0⇒ λ∗ =
(

1
n

∑n
i=1 xi

)−1
.

Since the random variables satisfy xi > 0 when drawn from an exponential distribution, this
estimate is strictly positive. The objective at λ = 0 is zero (i.e., L(0) = 0), and the objective
as λ → ∞ is also zero (i.e., limλ→∞ L(λ) = 0). Consequently, the above solution must be the
global maximum.

Observe that in this case the MLE estimate is equivalent to the inverse of the sample average.
However, in other cases the MLE estimate can differ from the estimates we previously considered.
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3.2 Transformation of the Objective Function

In some cases, it can be easier to solve a transformed version of the optimization problem. For
instance, two transformations that are useful in practice are:

1. instead of maximizing the likelihood, we could equivalently minimize the negative of the
likelihood;

2. instead of maximizing the likelihood, we could equivalently maximize the likelihood com-
posed with a strictly increasing function.

In fact, one very useful transformation is the minimize the negative log-likelihood. The utility of
such transformations is most clearly elucidated by an example.

3.3 Example: Mean and Variance of Gaussian

Suppose Xi ∼ N (µ, σ2) are iid measurements from a Gaussian with unknown mean and variance.
Then the MLE estimate is given by the solution to

max (2πσ2)−n/2 exp
(∑n

i=1−(xi − µ)2/(2σ2)
)
.

If we instead minimize the negative log-likelihood, then the problem we would like to solve is

min (n/2) log(2πσ2) +
∑n

i=1(xi − µ)2/(2σ2).

If we consider the objective function h(µ, σ2) = (n/2) log(2πσ2) +
∑n

i=1(xi − µ)2/(2σ2) (that
is we are treating the σ2 as a single variable), then setting its gradient equal to zero gives[

hµ
hσ2

]
=

[ ∑n
i=1 2(xi − µ)/(2σ2)

n/(2σ2)−
∑n

i=1(xi − µ)2/(2(σ2)2)

]
= 0,

where hµ and hσ2 denote the partial derivatives of h(µ, σ2) with respect to µ and σ2, respectively.
To solve this, we first begin with

hµ =
∑n

i=1 2(xi − µ)/(2σ2) = 0⇒
∑n

i=1(xi − µ) = 0⇒ µ̂ = 1
n

∑n
i=1 xi,

where we have made use of the fact that σ2 > 0. Next, note that

hσ2 = n/(2σ2)−
∑n

i=1(xi−µ̂)2/(2(σ2)2) = 0⇒ nσ2 =
∑n

i=1(xi−µ̂)2 ⇒ σ̂2 = 1
n

∑n
i=1(xi−µ̂)2,

where we multiplied by (σ2)2 on the second step.

The estimate of the mean µ̂ = 1
n

∑n
i=1 xi is simply the sample average; however, the estimate

of the variance σ̂2 = 1
n

∑n
i=1(xi − µ̂)2 is a biased estimator of the variance (cf. the unbiased

estimator s2 = 1
n−1

∑n
i=1(xi − µ̂)2).
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3.4 Example: Linear Function of Normal Distribution

As another example, suppose that yi = x′iβ + εi where εi ∼ N (0, σ2) are iid with unknown σ2.
The key observation is that εi = yi − x′iβ, and so the yi − x′iβ are iid N (0, σ2).

Consequently, the MLE estimate of β is given by

max (2πσ2)−n/2 exp
(∑n

i=1−(yi − x′iβ)2/(2σ2)
)
.

Taking the logarithm of the objective function, we get

β̂ = arg max
n∑
i=1

(
− (yi − x′iβ)2/(2σ2)− 1

2
log σ2 − 1

2
log(2π)

)
.

Note that the maximizer of this optimization problem does not depend on σ2 or the constant
−1

2
log(2π). And so simplifying this, we have that

β̂ = arg max
β

n∑
i=1

−(yi − x′iβ)2 = arg min
β

n∑
i=1

(yi − x′iβ)2 = arg min
β
‖Y −Xβ‖22.

This is equivalent to the OLS estimate!

One dangling point remains: We still have to provide an estimate of σ2. In some applications, we
do not care about the variance of the noise. In these cases, this variance is known as a nuisance
parameter. But suppose we have an application where we care about the variance of the noise.
Then, we can finish computing the MLE estimate for the noise. In particular, suppose we set the
derivative of the negative log-likelihood with respect to σ2 (treated as a variable) equal to zero;
then, this gives

n

2σ2
− ‖Y −Xβ̂‖

2
2

2(σ2)2
= 0⇒ σ̂2 =

1

n
‖Y −Xβ̂‖22.

3.5 Example: Linear Function of Laplacian Distribution

Gaussian noise is not the only possibility for the measurement error in a linear model. Some
noise distributions are called “long-tailed” because the probability of seeing extreme values for
these distributions is greater than that for the Gaussian distribution. A canonical example is the
Laplacian distribution, which is defined as a random variable with pdf given by

f(u) =
1

2b
exp

(
− |u− µ|/b

)
,

where µ is the location parameter and b > 0 is a scale parameter. The mean of this distribution
is µ, and the variance is 2b2.
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It is interesting to consider what the MLE estimate for the parameters of a linear model with
Laplacian noise looks like. Specifically, this is the setting where the model is

yi = x′iβ + εi,

and the noise is described by a zero-mean Laplacian distribution with unknown scale parameter
b. The likelihood for pairs of independent measurements (xi, yi) for i = 1, . . . , n is given by

L(β, b) = (2b)−n exp
(
−
∑n

i=1 |yi − x′iβ|/b
)
.

So the MLE is given by the minimizer to the negative log-likelihood

min n log(2b) +
n∑
i=1

|yi − x′iβ|/b.

Now observe that the minimum of
∑n

i=1 |yi−x′iβ| is independent of b. And so the MLE estimate
of the parameters is equivalently given by the solution to

β̂ = arg min
n∑
i=1

|yi − x′iβ|.

If we define the matrix X ∈ Rn×p and a vector Y ∈ Rn such that the i-th row of X is x′i and
the i-th row of Y is yi, then this problem can be rewritten as

β̂ = arg min ‖Y −Xβ‖1,

where ‖ · ‖1 is the usual L1-norm. (Recall that for a vector v ∈ Rk the L1-norm is ‖v‖1 =
|v1| + . . . + |vk|.) There is no closed-form expression for the solution to this optimization prob-
lem. Fortunately, this optimization problem is a specific case of an LP, and so there are efficient
algorithms to solve this problem.

Lastly, we can ask what is the estimate of the nuisance parameter b? Setting the derivative with
respect to b of the negative log-likelihood equal to zero and then solving gives

n

b
− ‖Y −Xβ̂‖1

b2
= 0⇒ b̂ =

1

n
‖Y −Xβ̂‖1.
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