
IEOR 165 – Lecture 5
Heteroscedasticity

1 Residuals Plot

Another approach to evaluating the the quality of a linear model is to plot the residuals. That is
we generate a scatter plot of the points (xi, yi − ŷi). If the variation in the y-direction does not
depend on x, and the average value in the y-direction is close to 0; then this provides evidence
that the linear model accurately fits the measured data. Some examples are illuminating.

1.1 Example: Linear Model of Demand

The residuals are

y1 − ŷ1 = 91− 91.0400 = −0.0400 y5 − ŷ5 = 0.4400

y2 − ŷ2 = 1.8100 y6 − ŷ6 = −1.3000
y3 − ŷ3 = −0.6000 y7 − ŷ7 = 0.5500

y4 − ŷ4 = 0.1250

And so plotting these gives
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1.2 Example: Ball Trajectory

The residuals are

yi − ŷi = {0.07, 0.04,−0.08, 0.04, 0.07,−0.08, 0.00,−0.07, 0.03,−0.02}.

And so plotting these gives

1.3 Example: Water Consumption

Imagine a scenario where we would like to construct a linear model to predict total water con-
sumption c of a city in Southern California based on the population p of the city, and assume the
data is given by

p = {13, 92, 23, 62, 95, 26, 45, 97, 24, 20}
c = {1173, 3848, 902, 2290, 3946, 567, 1623, 3947, 1573, 1312}.

The usual approach gives an estimated linear model of

ĉ = 37 · p+ 263.

Plotting the estimated model on the scatter plot, we have
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And the residuals are

ci − ĉi = {429, 181,−212,−267, 168,−658,−305, 9, 422, 309}.

Plotting these gives

2 Heteroscedasticity

One striking feature of the residual plot (and the comparison of the estimated linear model to the
scatter plot) in the water consumption example is that the measurement noise (i.e., noise in y)
is larger for smaller values of x. When we are interested in estimation (as opposed to prediction)
using linear models, this can be a problem because it is in conflict with the assumptions we have
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made regarding the linear model. Recall that the statistical model is

y = x′β + ε,

where ε is independent of x.

However, this model is not true when the measurement noise depends on the predictors. One
situation of this behavior is known as heteroscedasticity, and it is a model where

y = x′β + ε,

but E[ε|x] = 0. Now suppose β̂ = (X ′X)−1X ′Y are the OLS parameters, then its expectation is

E(β̂) = E((X ′X)−1X ′Y ) = E((X ′X)−1X ′(Xβ + e))

= E
(
E[(X ′X)−1X ′(Xβ + e)|X]

)
= E((X ′X)−1X ′Xβ) = β.

Thus, the OLS estimator is still estimating the correct value. However, it does not give an esti-
mate with the minimum possible error in the value of β̂. There are many approaches to improve
the accuracy of estimates inn linear modesl with heteroscedasticity, and we will discuss two such
approaches.

2.1 Weighted Least Squares

One approach assumes that we know the variance of ε conditioned on x, that is we know E[ε2|x].
Strictly speaking, we only need to know a number that is proportional to this conditional variance.
Suppose we define the function

w(x) =
1

E[ε2|x]
.

In practice, we do not know this function value. It is common to approximate this function by
inspecting the scatter plot and deciding reasonable values.

In the OLS context, we can define a matrix W 1/2 such that W 1/2 is a diagonal matrix whose i-th
diagonal is equal to

√
w(xi). And then we solve the weight least squares problem

β̂ = argmin ‖W 1/2(Y −Xβ)‖2 = (X ′WX)−1X ′WY.

In the special case of a linear model with a single predictor and a constant/intercept term (i.e.,
y = mx+ b), this gives the following equations for estimating the model parameters:

m̂ =
wxy − wx · wy
wx2 − (wx)2

b̂ =
wy − m̂ · wx

w
.
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2.2 Semiparametric Approach

Another approach is a two-step procedure. Let k be a constant we fix before starting the
procedure. In the first step, we estimate E[y|x] by computing

ỹi =
1
k

∑
j such that xj is one of the k nearest points to xi

yj.

In the second step, we estimate the model parameters by using the regular least squares equations
with the data (xi, ỹi) for i = 1, . . . , n.

2.3 Example: Water Consumption

2.3.1 Weighted Least Squares Approach

Based on the scatter plot and the residuals plot, it roughly looks like the variance is double for
points with xi < 70 as compared to the variance for points with xi ≥ 70. As a result, we use the
weighting function

w(x) =

{
1/2, if x < 70

1, if x ≥ 70.

Recall that the data is given by

p = {13, 92, 23, 62, 95, 26, 45, 97, 24, 20}
c = {1173, 3848, 902, 2290, 3946, 567, 1623, 3947, 1573, 1312}.

Then the weighted least squares estimates are determined by first computing

wx = 1
10
· (1

2
· 13 + 92 + 1

2
· 23 + 1

2
· 62 + 1

2
· 95 + 1

2
· 26 + 1

2
· 45 + 97 + 1

2
· 24 + 1

2
· 20) = 39.05

wy = 1
10
· (1

2
· 1173 + 3848 + 1

2
· 902 + 1

2
· 2290 + 1

2
· 3946 + 1

2
· 567 + 1

2
· 1623 + 3947+

1
2
· 1573 + 1

2
· 1312) = 1646

wxy = 1
10
· (1

2
· 13 · 1173 + 92 · 3848 + 1

2
· 23 · 902 + 1

2
· 62 · 2290 + 1

2
· 95 · 3946 + 1

2
· 26 · 567+

1
2
· 45 · 1623 + 97 · 3947 + 1

2
· 24 · 1573 + 1

2
· 20 · 1312) = 127662

wx2 = 1
10
· (1

2
· 132 + 922 + 1

2
· 232 + 1

2
· 622 + 1

2
· 952 + 1

2
· 262 + 1

2
· 45 + 97 + 1

2
· 24 + 1

2
· 20)

= 3101

w = 1
10
· (1

2
+ 1 + 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1 + 1

2
+ 1

2
) = 0.65

Thus, our estimates are

m̂ =
wxy − wx · wy
wx2 − (wx)2

= 40

b̂ =
wy − m̂ · wx

w
= 116.
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2.3.2 Semiparametric Approach

Suppose we choose k = 3, and recall that the data is given by

p = {13, 92, 23, 62, 95, 26, 45, 97, 24, 20}
c = {1173, 3848, 902, 2290, 3946, 567, 1623, 3947, 1573, 1312}.

Then, in the first step we compute

ỹ1 =
1

3
· (1173 + 902 + 1312) = 1129 ỹ6 =

1

3
· (567 + 902 + 1573) = 1014

ỹ2 =
1

3
· (3848 + 3946 + 3947) = 3914 ỹ7 =

1

3
· (1623 + 2290 + 567) = 1493

ỹ3 =
1

3
· (902 + 567 + 1573) = 1014 ỹ8 =

1

3
· (3947 + 3848 + 3946) = 3914

ỹ4 =
1

3
· (2290 + 1623 + 3848) = 2587 ỹ9 =

1

3
· (1573 + 902 + 567) = 1014

ỹ5 =
1

3
· (3946 + 3848 + 3947) = 3914 ỹ10 =

1

3
· (1312 + 902 + 1573) = 1262

In the second step, we estimate the model parameters by using the regular least squares equations
with the data (xi, ỹi). This gives

m̂ = 38b̂ = 232.

2.4 Comparing the Estimates

It is useful to compare the estimated parameters using the three methods, as well as plot the
corresponding curves. The model that was used to generate the data (in a sense this represents
the “true” model) is given by

c = 40 · p+ 100.

The models estimated by ordinary least squares, weighted least squares, and the semiparametric
approach are

ĉ = 37 · p+ 263

ĉ = 40 · p+ 116

ĉ = 38 · p+ 232.

respectively. The weighted least squares estimates are closest to the true model, and the semi-
parametric estimates are better than those of ordinary least squares. However, the semiparametric
estimates are not as good as those of weighted least squares. In general, the semiparametric ap-
proach works well when we have a lot of data. In our example, we only have n = 10 data points,
and so the semiparametric approach would not be expected to work very well. Plotting all three
estimated models on the scatter plot, we have
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3 Estimating Nonlinear Models with Linear Regression

One reason for the popularity of linear regression is that it can often be used to estimate nonlinear
models. There are a few different examples of this.

3.1 Nonparametric Regression

Suppose we would like to estimate the parameters of a polynomial model:

y = a0 + a1 · x+ a2 · x2 + · · ·+ ak · xk.

It turns out that given measurements (xi, yi) for i = 1, . . . , n, we can estimate the parameters
a0, . . . , ak by solving an OLS using the following variables as predictors:

1, x, x2, . . . , xk.

As another example, suppose we would like to estimate a model that is a partial sum of a Fourier
series:

y = c+
k∑

m=1

(
am · sin(2πmx) + bm · cos(2πmx)

)
.

We can estimate the parameters c, am, bm by solving an OLS using the following variables as
predictors:

1, sin(2πmx), cos(2πmx), for all m = 1, . . . , k.
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3.2 Nonlinear Transformation

In other cases, we can perform a nonlinear transformation on the data to convert the estimation
problem into linear regression. For example, suppose the model we would like to estimate is

y = exp(mx+ b).

If we take the logarithm of y, then we have

log y = mx+ b.

Hence, given measurements (xi, yi) for i = 1, . . . , n, we can estimate the parameters m, b by
using our least squares formula but with the xi as the predictor measurements and log yi as the
response measurements.
As another example, suppose the model we would like to estimate is

y = (m log x+ b)2.

Then if we take the square root of y, then we have

√
y = m log x+ b.

Thus, we can estimate the parameters m, b by using our least squares formula but with log xi as
the predictor measurements and

√
yi as the response measurements.
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