
IEOR 165 – Lecture 4
Diagnostics

1 Some Linear Regression Examples

Linear regression is an important method, and so we discuss a few additional examples. First,
recall that a linear model given by

y = m · x+ b+ ε,

where x ∈ R is a single predictor, y ∈ R is the response variable, m, b ∈ R are the coefficients
of the linear model, and ε is zero-mean noise with finite variance that is also assumed to be
independent of x.

For this linear model, the method of least squares can be used to estimate m,x. If we let

x = 1
n

∑n
i=1 xi

y = 1
n

∑n
i=1 yi

xy = 1
n

∑n
i=1 xiyi

x2 = 1
n

∑n
i=1 x

2
i ,

then the least squares estimates of m,x are given by

m̂ =
xy − x · y
x2 − (x)2

b̂ = y − m̂ · x.

These equations look different from the ones we derived in the previous lecture, but they can be
shown to be equivalent after performing some algebraic manipulation.

1.1 Example: Linear Model of Demand

Imagine we are running a several hot dog stands, and for n = 7 different stands we have different
prices for a hotdog. For these different stands, we record the number of hotdogs purchased (in a
single day) at the i-th stand and the price of a single hotdog at the i-th stand. Suppose we would
like to build a linear model that predicts demand of hotdogs as a function price, and assume the
(paired) data is H = {91, 86, 74, 85, 86, 87, 82} and P = {0.80, 1.30, 2.00, 1.25, 1.20, 1.00, 1.50}.

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
A: The predictor is the price P of a hotdog, and the response is the number H of hotdogs
purchased.
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2. Q: What is the linear model?
A: The linear model is H = m · P + b.

3. Q: Construct a scatter plot of the raw data.
A:

4. Q: Estimate the parameters of the linear model.
A: We first compute the sample averages:

x = 1
7
· (0.80 + 1.30 + 2.00 + 1.25 + 1.20 + 1.00 + 1.50) = 1.2929

y = 1
7
· (91 + 86 + 74 + 85 + 86 + 87 + 82) = 84.4286

xy = 1
7
· (91 · 0.80 + 86 · 1.30 + 74 · 2.00 + 85 · 1.25 + 86 · 1.20 + 87 · 1.00 + 82 · 1.50)

= 107.4357

x2 = 1
7
· (0.802 + 1.302 + 2.002 + 1.252 + 1.202 + 1.002 + 1.502) = 1.7975.

Inserting these into the equations for estimating the model parameters gives:

m̂ =
xy − x · y
x2 − (x)2

=
107.4357− 1.2929 · 84.4286

1.7975− (1.2929)2
= −13.7

b̂ = y − m̂ · x = 84.4286− (−13.7) · 1.2929 = 102.

5. Q: Draw the estimated linear model on the scatter plot.
A:
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6. Q: What is the predicted demand if the price was 1.25?
A: The predicted demand is

Ĥ(1.25) = m̂ · 1.25 + b̂ = −13.7 · 1.25 + 102 = 85.

1.2 Example: Linear Model of Vehicle Miles

Imagine we conduct a survey in which we ask a random subset of the population to provide the
following information:

• Annual salary S

• Vehicle miles driven last month M

• County of residence, and we only survey people from the counties

C ∈ {Alameda, San Francisco, San Mateo, Santa Clara}

Suppose we would like to build a linear model that predicts vehicle miles driven last month based
on an person’s annual salary and what county they live in.

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
A: The response is vehicle miles M . The predictor variables are more complicated because
C is a categorical variable. The predictor variables are: S, C1 = 1(C = Alameda),
C2 = 1(C = San Francisco), and C3 = 1(C = San Mateo).
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In general, if C is a categorical variable with d possibilities, then we must define d − 1 binary
variables to represent the d possibilities. The d − 1 binary variables represent d possible combi-
nations because setting the d− 1 binary variables to zero represents the d-th category. Note that
we do not define d binary variables.

1.3 Example: Ball Trajectory

Imagine we are conducting a physics experiment for our class, and the experiment is that we
through a small ball and measure its displacement x and height y. Suppose we would like
to build a linear model that predicts height of the ball as a function of displacement, and
assume the (paired) data is x = {0.56, 0.61, 0.12, 0.25, 0.72, 0.85, 0.38, 0.90, 0.75, 0.27} and
y = {0.25, 0.22, 0.10, 0.22, 0.25, 0.10, 0.18, 0.11, 0.21, 0.16}.

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
A: The predictor x, and the response y.

2. Q: What is the linear model?
A: The linear model is y = m · x+ b.

3. Q: Construct a scatter plot of the raw data.
A:

4. Q: Estimate the parameters of the linear model.
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A: We first compute the sample averages:

x = 0.5410

y = 0.1800

xy = 0.0974

x2 = 0.3593.

Inserting these into the equations for estimating the model parameters gives:

m̂ =
xy − x · y
x2 − (x)2

=
0.0974− 0.5410 · 0.1800

0.3593− (0.5410)2
= 0

b̂ = y − m̂ · x = 0.1800− 0 · 0.5410 = 0.18.

5. Q: Draw the estimated linear model on the scatter plot.
A:

6. Q: What is the predicted height if the displacement was 0.2?
A: The predicted height is

ŷ(0.2) = m̂ · 0.2 + b̂ = 0 · 0.2 + 0.18 = 0.18.

2 Coefficient of Determination

From a practical standpoint, it can be useful to evaluate the accuracy of a linear model. Given
the ubiquity of linear models, a large number of approaches have been developed. The simplest
approach is to visually compare a scatter plot of the data to the plot of the estimated linear model;
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however, this comparison can be misleading or difficult to evaluate. Another simple approach is
known as the coefficient of determination, which is defined as the quantity

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

= 1− (y − ŷ)2

(y − y)2

This is a common approach, and it is popular because it is easy to compute.

The quantity R2 ranges in value from 0 to 1. The intuition for this range is that if we chose
estimates of m̂ = 0 and b̂ = ŷ, then the least squares objective would be

∑n
i=1(yi − y)2. And

since ŷi correspond to the m̂, b̂ estimates that minimize the least squares objective, we must have
that 0 ≤ (y − ŷ)2 ≤ (y − y)2. Thus, it holds that

0 ≤ (y − ŷ)2

(y − y)2
≤ 1,

which means that 0 ≤ R2 ≤ 1.

Furthermore, the closer the quantity R2 is to the value 1, then the better the estimated linear
model fits the measured data. The reason is that the better the model fits the data, the closer
the ŷi are to the yi. Thus, (y − ŷ)2 will be close to the value 0 when the model fits the data

very well. And so (y−ŷ)2

(y−y)2
will be close to 0, and R2 will be close to 1.

There is a subtlety to this definition, however. In particular, it is the case that ŷi can only get
closer to yi as the number of predictors increases. So if we have a large number of predictors
(even if the predictors are completely irrelevant to the real system), it is typically the case that
(yi − ŷi)2 is small. Hence, R2 will go closer to 1 as the number of predictors increases. As a
result, sometimes the adjusted R2 value is used instead. The adjusted R2 is defined as

R2
adj = R2 − (1−R2) · d

n− d− 1
,

where d is the total number of predictors (not including the constant/intercept term), and n is
the number of data points. The adjusted R2 is only of interest when we have more than one
predictor variable.

2.1 Example: Linear Model of Demand

We can compute R2 for the hotdog example. First, we compute ŷi:

ŷ1 = m̂ · x1 + b̂ = −13.7 · 0.8 + 102 = 91.0400 ŷ5 = 85.5600

ŷ2 = 84.1900 ŷ6 = 88.3000

ŷ3 = 74.6000 ŷ7 = 81.4500

ŷ4 = 84.8750
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Next, we compute (yi − ŷi)2:

(y1 − ŷ1)2 = (91− 91.0400)2 = 0.0016 (y5 − ŷ5)2 = 0.1936

(y2 − ŷ2)2 = 3.2761 (y6 − ŷ6)2 = 1.6900

(y3 − ŷ3)2 = 0.3600 (y7 − ŷ7)2 = 0.3025

(y4 − ŷ4)2 = 0.0156

We also compute (yi − y)2:

(y1 − y)2 = (91− 84.4286)2 = 43.1833 (y5 − y)2 = 2.4694

(y2 − y)2 = 2.4694 (y6 − y)2 = 6.6122

(y3 − y)2 = 108.7551 (y7 − y)2 = 5.8980

(y4 − y)2 = 0.3265

Finally, we can compute R2:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

=

1− 0.0016+3.2761+0.3600+0.0156+0.1936+1.69+0.3025
43.1833+2.4694+108.7551+0.3265+2.4694+6.6122+5.8980

= 0.96

2.2 Example: Ball Trajectory

We can compute R2 for the physics example. First, we compute ŷi. Since m̂ = 0, we have that
ŷi = b̂ = 0.18. Next, we compute (yi − ŷi)2:

(yi − ŷi)2 = {8248.3, 7365.1, 5449.4, 7194.4, 7365.1, 7537.7, 6694.5}.

We also compute (yi − y)2:

(yi − y)2 = {8248.3, 7365.1, 5449.4, 7194.4, 7365.1, 7537.7, 6694.5}.

Since (yi − ŷi) = (yi − y), we have that

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

= 1− 1 = 0.
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