
IEOR 165 – Lecture 25
Power Analysis

1 Problem Statement

In the Neyman-Pearson framework, it is common to begin the analysis before any data is collected.
The reason is that it is natural to ask if there is a methodological approach for determining how
much data should be gathered? This can be quite important in practice because gathering data
can be monetarily expensive or costly in other factors like time.

Suppose the size of the test α is fixed at a desired value, then the power of the test becomes
fixed. However, by choosing the amount of data n, we can adjust the power of the test. However,
implicit in this is a notion of effect size. This is a subtle notion, and so it best illustrated by an
example: Suppose iid data is from Xi ∼ N (µ, σ2) where σ2 is known, and consider the hypothesis

H0 : µ ≤ 0

H1 : µ > 0.

In this example, the power of the test will be

inf
µ>0

β(µ) = β(0) = α,

since, as discussed previously, the power

β(µ) = Pµ
(√

n
(X − µ)

σ
≥ c−

√
n
µ

σ

)
.

is increasing in µ. This is problematic because the power of the test must necessarily depend on
the size of the test α, and it does not depend on the sample size n.

The issue in the above example is that there we have ignored the effect size in computing the
power. It is often the case that if the true mean is small (for example µ = 0.001), then we are
not interested having a large power for this instance. We will often have a minimum difference
for which differences larger than this are more interesting to detect. The notion of effect size is
how much difference would we like to have high power to detect between the null and alternative
hypothesis? In the case of the example, we might say that there is some known value ∆ such
that we are interested in determining if µ ≥ ∆ (versus the null hypothesis). In this case, the
power is now given by

inf
µ≥∆

β(µ) = β(∆).

The region of 0 < µ < ∆ is called the indifference region because, though it is part of the alterna-
tive hypothesis, we are not interested in having a high power for this region of possible values of µ.

1



It turns out that the ability to methodologically choose the sample size is an advantage of the
Neyman-Pearson framework. We cannot do this for the setting of null hypothesis testing because
there is no notion of an alternative hypothesis.

2 Example: One-Sided Test for Gaussian with Known Vari-
ance

Suppose iid data is from Xi ∼ N (µ, σ2) where σ2 is known, and consider the hypothesis

H0 : µ ≤ 0

H1 : µ > 0.

Now imagine that we have fixed the size of the test to α, and we would like the power of the
test to be some value of β that we have chosen to be close to one. Recall that the test has size
α if we reject the test whenever

√
nX/σ > z(1− α). And so we would like

β = β(∆) = P
(
Z ≥ z(1− α)−

√
n

∆

σ

)
= P

(
− Z ≤ −z(1− α) +

√
n

∆

σ

)
= P

(
Z ≤ −z(1− α) +

√
n

∆

σ

)
where Z ∼ N (0, 1), and we have used the fact that Z and −Z have the same distribution.
Consequently, by definition we have that

−z(1− α) +
√
n

∆

σ
= z(β)⇒ n = (∆/σ)−2(z(1− α) + z(β))2.

3 Monte Carlo Algorithm

Finding an equation to choose the sample size can be difficult, and so one possible approach is
to use a Monte Carlo algorithm to help choose the sample size. Suppose we have a parametric
hypothesis class Pθ with a simple null and alternative hypothesis

H0 : θ = θ0

H1 : θ = θ1.

The algorithm will take as input

• Desired size α;

• Desired power β;
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• Likelihood ratio L(X, θ0, θ1);

• Function to generate random samples from Pθ;

• Set of thresholds {c1, c2, . . . , cm};

• Set of sample sizes {n1, n2, . . . , nq};

• Repetition count M , which is a large number (say M = 1000).

The algorithm is as follows:

1. For j = 1, . . . , q

(a) For k = 1, . . . ,m

i. For s = 1, . . . ,M

A. Randomly choose Xi ∼ Pθ0 , for i = 1, . . . , nj;

B. Randomly choose Yi ∼ Pθ1 , for i = 1, . . . , nj;

C. If L(X, θ0, θ1) > ck, then set δs = 1;

D. If L(X, θ0, θ1) < ck, then set δs = 0;

E. If L(Y, θ0, θ1) > ck, then set γs = 1;

F. If L(Y, θ0, θ1) < ck, then set γs = 0;

ii. Set ak = δs/M ;

iii. Set bk = γs/M ;

(b) Define λ to be the index of the largest value of aλ ∈ {a1, . . . , am} such that aλ is less
than or equal to α. (If no such value exists, then the input needs to be modified to
allow smaller thresholds);

(c) If bλ ≥ β, then return the values: sample size should be n = nj and threshold should
be c = cλ.

If no value is returned, then this means that the input needs to be modified to allow larger sample
sizes.

4 More Information and References

The material in these notes follows that of the textbook “Mathematical Statistics, Basic Ideas
and Selected Topics, Vol. 1, (2nd Edition)” by Peter Bickel and Kjell Doksum.
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