
IEOR 165 – Lecture 22
Weighted Control Charts

1 Other Control Charts

1.1 Fraction Defective

Suppose that when the process is in control, the probability that a single item will be defective
is p. Now suppose X1, X2, . . . is zero (with probability 1 − p) if the corresponding item is not
defective, and is one (with probability p) if the corresponding item is defective. The main idea is
that if we look at the sum of a subgroup

V j+1 =
n∑

i=1

Xjn+i,

then this quantity has a binomial distribution with n trials and success probability p. Because
the expected number of defects in one subgroup is np, we need n to be fairly large in order to
observe some defects (since p will typically be relatively small). However, when n is large, we can
approximate a binomial distribution by N (np, np(1− p)).
This approximation can be used to construct a control chart. In particular, if we define

F j+1 =
1

n
V j+1,

then this is approximately distributed as N (p, p(1− p)/n). And so we can construct the control
chart for F j+1 using the confidence intervals for a Gaussian distribution. In particular, we would
use

LCL = p− z(1− α/2) ·
√
p(1− p)

n

UCL = p+ z(1− α/2) ·
√
p(1− p)

n
.

And we say the process is out of control if F j+1 /∈ [LCL,UCL].

1.2 Number of Defects

Suppose the number of defects in the i-th item Xi is described by a Poisson random variable
with mean λ. One example where this occurs is when there are K different possible faults, and
each fault can occur with probability p. If K is large relative to p, then the binomial distribution
with K trials and success probability p can be approximated by a Poission distribution with mean
Kp. As a result, when we talk about the number of defects we will exam one item at a time.
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Let L be a Poission random variable with mean 1, and define `(1 − α) to be the value θ such
that P(L ≤ θ) = 1− α. Then the confidence interval is

P

(
`(α/2) ≤ Xi

λ
≤ `(1− α/2)

)
= 1− α

⇒ µi =
Xi

`(1− α/2)
, µi =

Xi

`(α/2)
.

Consequently, we have that

LCL = `(α/2) · λ
UCL = `(1− α/2) · λ,

and we say the process is out of control if Xi /∈ [LCL,UCL].

2 Changes in Population Mean

Another situation in which control charts are used is when we are interested in detecting changes
in the mean of a process. There are multiple possible approaches.

2.1 Moving-Average Control Charts

Suppose X1, X2, . . . ∼ N (µ, σ2) are measurements, and let X
k

be the sample average of the
k-th subgroup of data (of size n points). Define the moving average as

Mk =

{
1
m
· (Xk−m+1

+ . . .+X
k−1

+X
k
), if k ≥ m

1
k
· (X1

+ . . .+X
k
), otherwise

This is a moving average over m steps. Because these quantities are simply linear combinations
of Gaussians, we can simply derive the upper control limits:

UCLk =

{
µ+ σ · z(1− α/2)/

√
nk, if k < m

µ+ σ · z(1− α/2)/
√
nm, otherwise

and the lower control limits:

LCLk =

{
µ− σ · z(1− α/2)/

√
nk, if k < m

µ− σ · z(1− α/2)/
√
nm, otherwise

We say that the process is out of control if Mk exceeds the limits defined by LCLk/MCLk.
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2.2 Exponentially Weighted Moving-Average Control Charts

Another weighting scheme that is possible is a recursive weighting

Mk = γ ·Xk
+ (1− γ) ·Mk−1,

where γ ∈ (0, 1] is a constant. The Mk is again a linear combination of Gaussians, and for k
large the Mk approximately have a variance of σ2γ/(n(2−γ)). Thus, the control limits are given
by

LCLk = µ− σ · z(1− α/2)/
√
n(2− γ)/γ

UCLk = µ+ σ · z(1− α/2)/
√
n(2− γ)/γ.

2.3 Choosing the Significance Level

The equation we derived in the previous lecture relating the significance level to the expected
number of subgroups that would be analyzed before the process is declared to be out of control
under the situation where the process was never out of control does not directly apply to this
case because it assumes independence between the different hypothesis tests. This independence
assumption is clearly not true for control charts using moving-averages, and so the question is
how should we instead choose the significance level for control charts based on moving-averages?
Instead of using an equation, an alternative approach is to use a Monte Carlo algorithm. In
particular, suppose we have a set A = {α1, . . . , αm} of possible values of the significance level,
and let M be a given large value (say M = 1000). Then we can do the following

1. For each value αk ∈ A

(a) For ind = 1, . . . ,M

i. Set j = 0

ii. Do

A. Randomly choose Xjn+i ∼ N (µ, σ2) for i = 1, . . . , n.

B. Compute M j+1 using one of the moving-average formulas.

C. Set j = j + 1.

iii. While M j ∈ [LCLj, UCLj], where the equations for LCLj/UCLj correspond
to the particular moving-average formula used.

iv. Set Eind = j.

(b) Set Lk =
1
M

∑M
ind=1Eind

The result of this algorithm will be a a set of pairs of values (αk, Lk), which relates a given
significance level αk to the expected number of subgroups analyzed Lk. This is a Monte Carlo
algorithm because we approximate the expectations by sampling many random values and using
sample averages as the approximation of the expectations.
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