
IEOR 165 – Lecture 2
Method of Moments

1 Estimating Mean and Variance

Imagine a scenario in which we are building an engineering model for a telephone call center to
handle airline reservations. For the purpose of analysis, we need to determine (i) the average
time spent handling a single call, and (ii) the variance of time spent handling a single call. To
determine these quantities, we decide to conduct an experiment in which we record the length of
time spent handling n randomly chosen calls over the time span of one month. The question is
how can we determine the average and variance using this data?

1.1 Abstract Model

We can abstract this scenario into the following mathematical setting: Suppose X1, X2, . . . , Xn

are independent and identically distributed (iid) random variables from some unknown distribution
with cdf FX(u). We should think of the Xi as n independent measurements from a single unknown
distribution, and this corresponds to the length of time spent handling the randomly chosen calls
in our scenario above. The mathematical question we are interested in answering is how to
determine µ(X) and σ2(X)?

1.2 Law of Large Numbers

One useful insight comes from the law of large numbers (lln). Roughly speaking, the lln states
that if U1, . . . , Un are iid random variables, then the sample average of the Ui converges to to
true mean µ(U) as n goes to infinity:

1

n

n∑
i=1

Ui → µ(U).

This is a useful insight because it means that we can use the sample average 1
n

∑n
i=1 Ui as an

estimate of the true mean µ(U).

1.3 Mean and Variance Estimates

In fact, this insight provides an approach for estimating both the mean and variance of X. In
particular, observe that

1

n

n∑
i=1

Xi → µ(X).
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Thus, the sample average µ̂ = 1
n

∑n
i=1Xi is an estimate of the mean of X. (Note that we use a

“hat” over variables to denote an estimated quantity, as opposed to the true quantity.)

Estimating the variance requires a little more work. First, note that variance is defined as σ2(X) =
E((X − µ)2). Performing algebra on this expression, we have

σ2(X) = E((X − µ)2) = E(X2 − 2µX + µ2) = E(X2)− 2µE(X) + µ2 =

E(X2)− 2µ2 + µ2 = E(X2)− µ2,

where we have used the following properties of expectation:

• E(X + Y ) = E(X) + E(Y );

• E(kX) = kE(X).

Second, recall that
1

n

n∑
i=1

X2
i → E(X2).

This means we can use 1
n

∑n
i=1X

2
i as an estimate of E(X2), and we have already chosen

1
n

∑n
i=1Xi as our estimate of the mean µ. Combining this, we conclude that an estimate of

the variance is given by

σ̂2 =
1

n

n∑
i=1

X2
i − µ̂2 =

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

.

1.4 Example: Call Center Estimation

Suppose the data from the experiments is X1 = 3, X2 = 1, X3 = 20, X4 = 6, X5 = 5. (In a real
experiment, we would have more than n = 5 measurements.) Then using the above formulas,
our estimate of the mean is

µ̂ =
1

n

n∑
i=1

Xi =
1

5
· (3 + 1 + 20 + 6 + 5) = 7,

and our estimate of the variance is

σ̂2 =
1

n

n∑
i=1

X2
i − µ̂2 =

1

5
· (32 + 12 + 202 + 62 + 52)− 72 = 45.2.
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2 Method of Moments

In the above call center scenario, we assumed that the distribution for the time spent handling
a single call was unknown. However, it is the case that the distribution for the service time
in a call center is often well represented by an exponential distribution. A random variable X
with exponential distribution is denoted by X ∼ E(λ), where λ > 0 is the rate, and it is the
distribution with pdf

fX(u) =

{
λ exp(−λu), if u ≥ 0,

0 otherwise
.

The cdf is given by

FX(u) =

{
1− exp(−λu), if u ≥ 0,

0 otherwise

and so P(X > u) = exp(−λu) for u ≥ 0. The mean is µ = 1
λ

, and the variance is σ2 = 1
λ2

.

One important property of an exponential distribution is that σ2 = µ2. However, the estimators
for mean and variance that we derived above are not guaranteed to satisfy this relationship. In
fact – for the data in the above example – we have that µ̂2 = 49 while σ̂2 = 45.2. This is not a
good situation, because it means that we are not using the full statistical knowledge available to
us when making the estimates of mean and variance. Given this mismatch, we turn our attention
towards the question of how we can develop mean and variance estimators that make better use
of our statistical knowledge.

2.1 Abstract Model

We can abstract this scenario into the following mathematical setting: Suppose X1, X2, . . . , Xn

are independent and identically distributed (iid) random variables from a known distribution with
cdf FX(u; θ1, . . . , θp), but with p unknown parameters θ1, . . . , θp that affect the shape of the
distribution. Two simple examples are:

• X ∼ N (θ1, θ2), where θ1 is an unknown mean of the Gaussian and θ2 is the unknown
variance of the Gaussian;

• X ∼ E(θ1), where θ1 is the rate parameter of the exponential distribution.

The mathematical question we are interested in answering is how to determine estimates of
θ1, . . . , θp?

2.2 Method of Moments Estimator

Note that E(Xj) is the j-th moment of X, and this is where the name of the method comes
from. To simplify the notation, let µj = E(Xj). The methods of moments estimator is derived
using the following steps:
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1. Symbolically compute the first p moments and express them as functions of the θ param-
eters:

µ1 = E(X) = g1(θ1, . . . , θp)

µ2 = E(X2) = g2(θ1, . . . , θp)

...

µp = E(Xp) = gp(θ1, . . . , θp).

2. Symbolically invert the system of equations g1, . . . , gp, which gives a new set of functions

θ1 = h1(µ1, . . . , µp)

θ2 = h2(µ1, . . . , µp)

...

θp = hp(µ1, . . . , µp).

3. Motivated by the lln, compute the following estimates of the moments

µ̂1 =
1

n

n∑
i=1

Xi

µ̂2 =
1

n

n∑
i=1

X2
i

...

µ̂p =
1

n

n∑
i=1

Xp
i

4. Compute estimates of the parameters by substituting µ̂j for µj in the set of functions
h1, . . . , hp, which gives the following estimators of the parameters:

θ̂1 = h1(µ̂1, . . . , µ̂p)

θ̂2 = h2(µ̂1, . . . , µ̂p)

...

θ̂p = hp(µ̂1, . . . , µ̂p).

2.3 Example: Exponential Distribution

We do not consider the example of a Gaussian distribution, because it turns out that the derivation
for the method of moments estimator is equivalent to the derivation we did in the first section.
Instead, we compute the method of moments estimator for an exponential distribution X ∼ E(θ1).
Since an exponential distribution has a single parameter, we have p = 1. Proceeding with the
four steps, gives
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1. Note µ1 = 1
θ1

, which we know by the properties of an exponential distribution;

2. Inverting this function gives θ1 = 1
µ1

;

3. An estimator of the first moment is µ̂1 = 1
n

∑n
i=1Xi;

4. Substituting this estimator gives θ̂1 = 1
1
n

∑n
i=1Xi

.

Next, recall the data from the call center experiments: X1 = 3, X2 = 1, X3 = 20, X4 = 6,
X5 = 5. Substituting these values into the equation we have derived, we get

θ̂1 =
1

1
n

∑n
i=1Xi

=
1

1
5
· (3 + 1 + 20 + 6 + 5)

=
1

7
.

To estimate the mean and variance, we substitute the estimated parameter into the equations
for the mean and variance. Thus, we get

µ̂ =
1

θ̂1
= 7

σ̂2 =
1

θ̂21
= 49.

Comparing this estimated mean and variance to the previous estimates, we see that the estimated
mean remains the same but the estimated variance is larger. However, this set of estimates is
arguably better because these estimates satisfy the relationships we would expect if the data is
drawn from an exponential distribution.

2.4 Example: Gamma Distribution

Suppose X1, . . . , Xn are iid and drawn from a Gamma distribution, which is a distribution with
pdf

fX(u) =
1

Γ(k)θk
uk−1 exp(−u/θ),

where Γ(·) is the Gamma function. The mean of a Gamma distribution is given by µ = kθ, and
its variance is σ2 = kθ2. What are the equations for the method of moments estimator for k, θ?
There are two useful hints for this problem. The first is that, in this example, the parameters are
k = θ1 and θ = θ2. The second is that the relationship E(X2) = µ2 = σ2 + µ2 is true for every
distribution where these quantities are finite.

Proceeding with the four steps, gives

1. From the properties of a Gamma distribution, we have

µ1 = kθ

µ2 = kθ2 + k2θ2;
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2. To invert these functions, first note that substituting the equation for µ1 into the equation
for µ2 gives

µ2 = µ1θ + µ2
1 ⇒ θ =

µ2 − µ2
1

µ1

.

Substituting this into the equation for µ1 gives

µ1 =
k(µ2 − µ2

1)

µ1

⇒ k =
µ2
1

µ2 − µ2
1

.

3. An estimator of the first and second moments is

µ̂1 =
1

n

n∑
i=1

Xi

µ̂2 =
1

n

n∑
i=1

X2
i ;

4. Substituting this estimator into the equations for k, θ gives

k̂ =
µ̂2
1

µ̂2 − µ̂2
1

=

(
1
n

∑n
i=1Xi

)2
1
n

∑n
i=1X

2
i −

(
1
n

∑n
i=1Xi

)2
θ̂ =

µ̂2 − µ̂2
1

µ̂1

=
1
n

∑n
i=1X

2
i −

(
1
n

∑n
i=1Xi

)2
1
n

∑n
i=1Xi

.

2.5 Example: Linear Model of Building Energy

The amount of energy consumed in a building on the i-th day Ei heavily depends on the outside
temperature on the i-th day Ti. Generally, there are two situations. When the outside tempera-
ture is low, decreasing temperature leads to increased energy consumption because the building
needs to provider greater amounts of heating. When the outside temperature is high, increasing
temperature leads to increased energy consumption because the building needs to provide greater
amounts of cooling. This is a general phenomenon, and is empirically observed with the real data
shown in Figure 1, which was collected from Sutardja Dai Hall.

Based on the figure, we might guess that when the outside temperature is below 59◦F, the
relationship between energy consumption and outside temperature is given by

E = a · T + b+ ε,

where a, b are unknown constants, and ε is a zero-mean/finite-variance random variable that
is independent of T . What is the method of moments estimate of a, b, σ2(ε) if we have n
measurements of (Ti, Ei)? There are two useful hints for this problem. The first is to use the
random variable

ε = E − a · T − b.
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h)Figure 1: Real data (right) from Sutardja Dai Hall (left) is shown. The data marked with dots
and crosses denote measurements made running two different versions of software on the heating,
ventilation, and air-conditioning (HVAC) system in Sutardja Dai Hall.

The second is to use the moments µ1(ε) and µ1(ε · T ) in step 1, instead of the moments µ1(ε)
and µ2(ε).

Proceeding with the four steps, gives

1. Recall that µ1(ε) = 0 since ε is zero-mean, and µ1(ε · T ) = 0 since ε is zero-mean and
independent of T . The moments are:

0 = µ1(ε) = µ1(E)− aµ1(T )− b
0 = µ1(ε · T ) = µ1(ET )− aµ2(T )− bµ1(T );

2. This is a linear system of equations, and so in matrix notation this is[
µ1(T ) 1
µ2(T ) µ1(T )

] [
a
b

]
=

[
µ1(E)
µ1(ET )

]
Solving for a, b gives[

a
b

]
=

1

(µ1(T ))2 − µ2(T )

[
µ1(T ) −1
−µ2(T ) µ1(T )

] [
µ1(E)
µ1(ET )

]
Simplifying this yields

a =
µ1(E)µ1(T )− µ1(ET )

(µ1(T ))2 − µ2(T )

b =
µ1(ET )µ1(T )− µ1(E)µ2(T )

(µ1(T ))2 − µ2(T )
.
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3. An estimator of the remaining moments is

µ̂1(E) =
1

n

n∑
i=1

Ei

µ̂1(T ) =
1

n

n∑
i=1

Ti

µ̂1(ET ) =
1

n

n∑
i=1

EiTi

µ̂2(T ) =
1

n

n∑
i=1

T 2
i ;

4. Substituting this estimator gives

â =
( 1
n

∑n
i=1Ei)(

1
n

∑n
i=1 Ti)−

1
n

∑n
i=1EiTi

( 1
n

∑n
i=1 Ti)

2 − 1
n

∑n
i=1 T

2
i

b̂ =
( 1
n

∑n
i=1EiTi)(

1
n

∑n
i=1 Ti)− ( 1

n

∑n
i=1Ei)(

1
n

∑n
i=1 T

2
i )

( 1
n

∑n
i=1 Ti)

2 − 1
n

∑n
i=1 T

2
i

.

However, this is a clumsy derivation for an estimator of a, b. In coming lectures, we will learn
simpler approaches for constructing such linear models.
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