
IEOR 165 – Lecture 17
Confidence Intervals

1 Definition of Confidence Interval

Suppose we have a distribution f(u; ν, φ) that depends on some parameters ν ∈ Rp, φ ∈ Rq.
The distinction between ν and φ is that ν are parameters whose values we care about, while
φ are parameters whose values we do not care about. The φ are sometimes called nuisance
parameters. The distinction can be situational: An example is a normal distribution f(u;µ, σ2) =

1√
2πσ2

exp(−(x− µ)/2σ2); in some cases we might care about only the mean, only the variance,
or both. We make the following definitions:

• A statistic ν is called a level (1− α) lower confidence bound for ν if for all ν, φ,

P(ν ≤ ν) ≥ 1− α.

• A statistic ν is called a level (1− α) upper confidence bound for ν if for all ν, φ,

P(ν ≥ ν) ≥ 1− α.

• The random interval [ν, ν] formed by a pair of statistics ν, ν is a level (1− α) confidence
interval for ν if for all ν, φ,

P(ν ≤ ν ≤ ν) ≥ 1− α.

These definitions should be interpreted carefully. A confidence interval does not mean that there
is a (1−α) chance that the true parameter value lies in this range. Instead, a confidence interval
at level (1− α) means that 100 · (1− α)% of the time the computed interval contains the true
parameter. The probabilistic statement should be interpreted within the frequentist framework
of the frequency of correct answers.

Another point to note about confidence intervals is that they are in some sense dual to null
hypothesis testing. Suppose we are interested in performing a one-sample location test. So, for
instance, we would like to evaluate the null hypothesis

H0 : Xi ∼ N (µ0, σ
2),

where µ0 is known, and we would like to use a two-sided test. If we compute the (1 − α)
confidence interval and µ0 /∈ [µ, µ], then p ≤ α. Similar relationships hold between one-sided
tests and upper/lower confidence bounds. If we compute the (1 − α) lower confidence bound
and µ0 < µ, then this is equivalent to a right-tailed test with p ≤ α. Additionally, if we compute
the (1− α) upper confidence bound and µ0 > µ, then this is equivalent to a left-tailed test with
p ≤ α.
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2 Confidence Intervals for Gaussian

There are two key cases. In the first, the variance is known; in contrast, the variance is unknown
in the second case.

2.1 Gaussian with Known Variance

Suppose Xi ∼ N (µ, σ2), where σ2 is known. Let Z ∼ N (0, 1), and define the notation z(1−α)
to be the value θ such that P(Z ≤ θ) = 1 − α. Note that by the properties of a Gaussian
distribution, we have that −z(α) = z(1 − α). Equivalently, we have P(Z ≥ θ) = 1 − α if
P(Z ≤ θ) = 1− P(Z ≥ θ) = α; this can be rewritten as P(Z ≥ z(α)) = 1− α. Then the three
types of confidence intervals are

• Lower Confidence Bound:

P

(
√
n ·
(X − µ

σ

)
≤ z(1− α)

)
= 1− α

⇒P

(
X − σ · z(1− α)/

√
n ≤ µ

)
= 1− α

⇒µ = X − σ · z(1− α)/
√
n.

When rounding, we should round this value down.

• Upper Confidence Bound:

P

(
√
n ·
(X − µ

σ

)
≥ z(α)

)
= 1− α

⇒P

(
X − σ · z(α)/

√
n ≥ µ

)
= 1− α

⇒µ = X + σ · z(1− α)/
√
n.

When rounding, we should round this value up.

• Confidence Interval:

P

(
√
n ·
∣∣∣X − µ

σ

∣∣∣ ≤ z(1− α/2)

)
= 1− α

⇒P

(
X − σ · z(1− α/2)/

√
n ≤ µ ≤ X + σ · z(1− α/2)/

√
n

)
= 1− α

⇒µ = X − σ · z(1− α/2)/
√
n, µ = X + σ · z(1− α/2)/

√
n.

When rounding, we should round µ down and µ up.
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2.2 Example: Chemical pH Testing

Q: In one chemical process, it is very important that a particular solution used as a reactant have
a pH of exactly 8.15. A method for determining pH available for solutions of this type is known
to give measurements that are normally distributed with a mean equal to the actual pH and a
standard deviation of 0.02. Suppose the sample size is 5, and we measure X = 8.26. What is
the level 0.9 confidence interval for the pH of the solution? If we conduct a hypothesis test to
check if the pH is equal to 8.15, then what is the conclusion?

A: Since we want a level 0.9 confidence interval, this means we have (1−α) = 0.9 or equivalently
that α = 0.1. The formula for µ is

µ = X − σ · z(1− α/2)/
√
n = 8.26− 0.02 · z(1− 0.1/2)/

√
5

= 8.26− 0.02 · z(0.95)/
√
5 = 8.26− 0.02 · 1.64/

√
5 = 8.24.

The formula for µ is

µ = X + σ · z(1− α/2)/
√
n = 8.26 + 0.02 · z(1− 0.1/2)/

√
5

= 8.26 + 0.02 · z(0.95)/
√
5 = 8.26 + 0.02 · 1.64/

√
5 = 8.28.

Thus, the level 0.9 confidence interval for the pH is [8.24, 8.27]. For the hypothesis test, we
reject the null hypothesis that the pH is exactly 8.15 because 8.15 /∈ [8.24, 8.27].

2.3 Example: Toothpaste Effectiveness

Q: An advertisement for a new toothpaste claims that it reduces cavities of children in their
cavity-prone years. Cavities per year for this age group are normal with mean 3 and standard
deviation 1. A study of 2,500 children who used this toothpaste found an average of 2.95 cavities
per child. Assume that the standard deviation of the number of cavities of a child using this
new toothpaste remains equal to 1. What is the level 0.95 upper confidence bound? Is this data
strong enough, at the 5 percent level of significance, to establish the claim of the toothpaste
advertisement?

A: The formula for the upper confidence bound µ is

µ = X + σ · z(1− α)/
√
n = 2.95 + 1 · z(1− 0.05)/

√
2500

= 2.95 + 1 · z(0.95)/
√
2500 = 2.95 + 1 · 1.62/

√
2500 = 2.99.

Thus, we should reject the null hypothesis that the new toothpaste is as good or worse than 3
cavities a year because 3 > 2.99.

2.4 Gaussian with Unknown Variance

Suppose Xi ∼ N (µ, σ2), where σ2 is unknown. Let Tn−1 be a random variable with the Stu-
dent’s t-distribution with n−1 degrees of freedom, and define the notation tn−1(1−α) to be the
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value θ such that P(Tn−1 ≤ θ) = 1 − α. Note that by the properties of a t-distribution,
we have that −tn−1(α) = tn−1(1 − α). Equivalently, we have P(Tn−1 ≥ θ) = 1 − α if
P(Tn−1 ≤ θ) = 1− P(Tn−1 ≥ θ) = α; this can be rewritten as P(Tn−1 ≥ tn−1(α)) = 1− α.

Define the value

s2 =
1

n− 1

n∑
i=1

(Xi −X)2,

Then the three types of confidence intervals are

• Lower Confidence Bound:

µ = X − s · tn−1(1− α)/
√
n.

When rounding, we should round this value down.

• Upper Confidence Bound:

µ = X + s · tn−1(1− α)/
√
n.

When rounding, we should round this value up.

• Confidence Interval:

µ = X − s · tn−1(1− α/2)/
√
n, µ = X + s · tn−1(1− α/2)/

√
n.

When rounding, we should round µ down and µ up.

2.5 Example: Diet and Lifespan

Q: The following data relate to the ages at death of a certain species of rats that were fed 1 of
3 types of diets. Thirty rats of a type having a short life span of an average of 17.9 months were
randomly divided into 3 groups of 10 each. The sample means and variances of ages at death
(in months) are:

Very Low Calorie Moderate Calorie High Calorie
Sample mean 22.4 16.8 13.7
Sample variance 24.0 23.2 17.1

Compute a level 0.99 lower confidence bound for the life-span under a very low calorie diet.
Would you accept a null hypothesis that life-span does not increase under a very low calorie diet
at a significance level of 0.01?

A: Since we want a level 0.99 confidence interval, this means we have (1 − α) = 0.99 or
equivalently that α = 0.01. The formula for the lower confidence bound µ is

µ = X − s · tn−1(1− α)/
√
n = 22.4−

√
24 · t10−1(0.99)/

√
10

= 22.4−
√
24 · 2.82/

√
10 = 18.03.

We should reject the null hypothesis since 17.9 < 18.03, and hence conclude that life-span
increases under a very low calorie diet.
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3 Bootstrap Confidence Intervals

One of the challenges with confidence intervals is that closed-form expressions may not be avail-
able for random variables with complicated distributions. Furthermore, in many cases, we may
not even a priori know the distribution of the random variables. The bootstrap is a nonpara-
metric technique from machine learning and statistics, and one of its possible applications is
to computing confidence intervals. The idea of the bootstrap is to pretend that the sample
distribution

F̂ (u) =
1

n

n∑
i=1

1(Xi ≤ u)

is the real distribution, and then use this distribution to compute the quantities of interest. This
might seem like an odd idea, but it does lead to correct answers in many cases. However, it is
worth noting that there are cases where the bootstrap will fail and will give incorrect answers.
However, for the cases where the bootstrap works, the intuition is that the sample distribution
will be an accurate approximation of the true distribution when we have measured a large amount
of data.

There are many variants of the bootstrap, and one popular version uses the Monte Carlo algorithm.
To make the discussion more concrete, consider the Monte Carlo algorithm to estimate the mean:

1. For j = 1, . . . , n

(a) Randomly choose i ∈ {1, . . . , n};
(b) Set Yj = Xi;

2. Set the mean estimate to µ̂ = 1
n

∑n
j=1 Yj.

Even when using a Monte Carlo algorithm, there are many variants to compute the confidence
interval. One of the simpler methods is the percentile bootstrap. Let M be a large number, say
M = 1000. The algorithm is as follows:

1. For k = 1, . . . ,M

(a) For j = 1, . . . , n

i. Randomly choose i ∈ {1, . . . , n};
ii. Set Yj = Xi;

(b) Set the k-th mean estimate to µ̂k =
1
n

∑n
j=1 Yj.

2. Compute the α/2-percentile of the µ̂ values, and call this µ;

3. Compute the (1− α/2)-percentile of the µ̂ values, and call this µ.

Recall that the γ-percentile of a random variable V is the value θ such that P(V < θ) ≤ γ and
P(V ≤ θ) ≥ γ. The range [µ, µ] is a (1− α) confidence interval.
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