
IEOR 165 – Lecture 15
Null Hypothesis Testing

The first principle is that you must not fool yourself; and you are the easiest
person to fool. So you have to be very careful about that. – Richard Feynman

1 Kidney Stone Treatment Example

In a study1 comparing the effectiveness of two classes of treatments for kidney stones, the following
success rates for each class of treatment were obtained:

Stone size Open surgery
Percutaneous

nephrolithotomy

< 2cm 81/87 (93%) 234/270 (87%)
≥ 2cm 192/263 (73%) 55/80 (69%)
Overall 273/350 (78%) 289/350 (83%)

Table 1: The numbers of successful treatments and total treatments are shown, with the success
rate given in parenthesis.

What is interesting about this example is that there is a counter-intuitive result. Percutaneous
nephrolithotomy has a higher success rate when all stone sizes are grouped together, but open
surgery has a higher success rate when comparing based on stone size. This result shows the
need for careful consideration of data when making comparisons.

1.1 Explanation of Simpson’s Paradox

The natural question to ask is: Why does this odd behavior occur in the kidney stone treatment
example? When comparing the treatments with the aggregated data, an assumption is implicitly
being made that the decision for which treatment to use does not depend upon the size of the
kidney stones. It turns out that this implicit assumption is incorrect, because open surgery was
more often used for larger kidney stones; however, larger kidney stones in general have a lower
treatment success rate because of its more complicated nature. This counter-intuitive result is
sometimes called Simpson’s paradox, though it is actually a manifestation of the more general
statement that “correlation does not equal causation”.

1C. Charig, D. Webb, S. Payne, J. Wickham, “Comparison of treatment of renal calculi by open surgery,
percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy”, Br Med J (Clin Res Ed), vol. 292, no.
6524, pp. 879–882, 1986.
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2 Null Hypothesis Testing

In many contexts (e.g., scientific, engineering, policy making, etc.), we must make a single
decision amongst a set of possible choices. Hypothesis testing is a set of multiple frameworks
for data-driven decision making. In this course, we will cover two such frameworks. The first is
called null hypothesis testing. The idea is as follows:

1. We begin with a base assumption about our system.

2. Data is measured from the system.

3. Then using measured data, we compute the probability of making observations that are
as (or more) extreme than was measured. This probability is computed under the base
assumption about the system, and this probability is called the p-value.

4. We make a decision on the basis of this probability. The reasoning is that if the above
probability is small, then it is unlikely that we would have observed the measured data if
the base assumption were true.

There is a subtle fundamental tension underlying this framework (and actually present within all of
hypothesis testing), which continues to cause significant controversy with hypothesis testing. The
tension is that we must make a decision regarding truth, but the framework of null hypothesis
testing does not relate to this concept; instead, we make decisions on the basis of trying to
invalidate some base assumption about the system. Moreover, the quantity we use to make
this decision is not the probability that the null hypothesis is true. Rather, the quantity is the
probability of observing extreme events under the assumption that the null is true.

3 Coin-Flipping Example

To make the discussion more concrete, consider the following scenario. We are given a specific
coin, and we would like to decide if the probability of getting heads on a single coin flip is exactly
50%.

3.1 Formulating the Null Hypothesis

The first step of this process is that we must convert the possible decisions about the coin into
a mathematical formulation. Specifically, we must convert the scenario into a base assumption
about the system. In this case, one possible base assumption is that

• the distribution of a single coin flip is given by a Bernoulli distribution;

• the result of each coin flip is (mutually) independent;

• the probability of heads is exactly 50%.
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3.2 Designing the Experiment

The second step of this process is that we must conduct an experiment to gather data that we
will use to make our decision. Part of this step involves the design of the experiment. In our
particular example, the design is the answer to the question: How many times should we flip the
coin? If we flip the coin only once, then we will not have a lot of data to make our decision; and
so we might be less confident with our decision. If we flip the coin one-billion times, then we
will have a lot of data to make our decision; but doing so many experiments can be prohibitive
because of cost or time constraints we might have. We would prefer to choose an intermediate
value. For this example, suppose we decide to do n = 100 flips.

3.3 Computing the p-Value

The third step is that we need to compute the probability of making observations that are as (or
more) extreme than was measured. To do this, observe that after our experiment the data will
consist of a sequence of flip results. So perhaps the flips were

H,H, T,H, T, T,H, T, T,H, . . .

To compute this p-value, we have to use the properties of our base assumption. The key insight
in this case is that the distribution for the total number of heads given n trials is a binomial
distribution. So in fact, the raw data is not directly used to compute the p-value. Instead, we
take the raw data and count the number of heads. For our example, suppose we have 40 heads
total. For this example, the situations that are as (or more) extreme are having 0 to 40 heads or
having 60 to 100 heads. This probability is given by

p =
∑

k∈{0,1,...,40,60,61,...,100}

(
100
k

)
0.5k · 0.5100−k.

Using MATLAB, this value is equal to p = 0.0569.

3.4 Making a Decision

The final step is that we must make a decision. Many textbooks use the terminology that we
either accept or reject the null hypothesis. If we accept the null hypothesis, mathematically this
means that we do not have enough data to invalidate the hypothesis; however, in terms of deci-
sions this is a decision that the null hypothesis is true. This mismatch between the mathematics
and the corresponding decision is one source of controversy about hypothesis testing. Similarly,
if we reject the null hypothesis, mathematically this means that the data (or more extreme data)
would be observed under the assumption of the null hypothesis with low probability; however, in
terms of decisions this a decision that the null hypothesis is false. Furthermore, the framework in
many textbooks for accepting or rejecting the null is to use a significance level α. If the p-value
is above (below) the significance level, then we accept (reject) the null.

3



There is an additional source of controversy in this final step. What significance level α should we
use to make decisions? The smaller the significance level, the more stringent the test is in terms
of requiring greater amounts of evidence to reject the null. In many sciences, it is customary to
use α = 0.05 or α = 0.01. (In particle physics, it is common to choose a significance level of
roughly α = 5×10−7.) One might ask what is the significance of the significance levels α = 0.05
or α = 0.01? And the answer is that these values are somewhat arbitrary and have become
common because of tradition.

Given this arbitrariness, another way to make decisions is to examine the risk of accepting or
rejecting the null, and take the risk of each possible decision and the p-value into account when
making the decision. In the case of coin flips, if we are going to use the coin for deciding who
serves first in a volleyball match then there is a low risk for incorrectly accepting the null; and so
we we would accept the null since the p-value (p = 0.0569) is fairly large. However, the risk is
context dependent. In another scenario, perhaps we are using coin flips to determine who must
be deployed in a war. There is a high risk for incorrectly accepting the null, and so we would
reject the null since the p-value is fairly small.

Moreover, there is often a third choice that is available beyond the conventional “accept” or
“reject” decisions: In some situations, we can make a decision to collect more data and conduct
additional analysis before we make a final decision regarding the system. However, it is important
to keep in mind that the decision to collect more data can carry risks itself. In addition to the
fiscal costs of conducting additional experiments, there are also costs that can be incurred by
delaying the final decision.
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