
IEOR 165 – Lecture 10
Distribution Estimation

1 Motivating Problem

Consider a situation where we have iid data xi from some unknown distribution. One problem of
interest is estimating the distribution that is generating the data. There are many useful examples
of this abstract problem, including:

• We are analyzing a telephone call center, and we measure the amount of time required
to provide service to each incoming phone call. Though an exponential distribution is a
commonly used model, it can be useful to estimate the distribution of the call lengths to
help validate the use of an exponential distribution model. In some cases, we may find by
using the data that an exponential distribution is not a good model.

• We are analyzing midterm scores within a class, and would like to gain a better understand-
ing of how well the class scored on the exam.

• We are taking pictures with a digital camera, and would like to determine if our picture is
underexposed or overexposed.

Within the problem of estimating the distribution using iid xi, there are two distinct problems:

1. Estimate the cdf Fx(u).

2. Estimate the pdf fx(u).

We will consider each of these problems. We will drop the x subscript to simply the notation.

2 Empirical Distribution Function

One natural estimator for the cdf F (u) is known as the empirical distribution function F̂ (u), and
it is defined as

F̂n(u) =
1

n

n∑
i=1

1(Xi ≤ u).

In fact, the Glivenko-Cantelli theorem tell us that

P
(
lim
n→∞

sup
u∈R

∣∣∣F̂n(u)− F (u)
∣∣∣ = 0

)
= 1.

This means the empirical distribution function F̂n(u) has good statistical problems, because it
means that with probability 1 the discrepancy between F̂ (u) and F (u) goes to 0.
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2.1 Example: Telephone Call Data

Suppose the lengths of calls at a call center are

{0.66, 0.05, 0.27, 1.26, 1.51, 0.38, 1.79, 0.94, 0.48, 0.89}.

Q: Plot the empirical distribution function.

A: The first step is to plot the location of each data point (top plot). The second step is
to draw the empirical distribution function (middle plot) by increasing the function value by
1/n = 1/10 = 0.1 at the location of each data point. The bottom plot compares the empirical
distribution to the true distribution function (an exponential distribution with rate parameter
λ = 1) that was used to generate this data.

3 Challenge with Density Estimation

Though the empirical distribution function F̂n(u) has good statistical problems, it is not well-
suited for estimating the density (i.e., the pdf) of the distribution. Recall that when a density
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exists, it is equal to the derivative of the distribution function. And so the reason that F̂n(u) is
not well-suited for estimating the pdf is that it is not differentiable in the normal sense.

To better understand this, recall that the Dirac delta function is defined as a measure such that

δ(A) =

{
1, if 0 ∈ A
0, otherwise

Informally, the Dirac delta function is a function defined such that

δ(u) =

{
0, if u 6= 0

+∞, if u = 0

and ∫ +∞

−∞
g(u)δ(u)du = g(0).

Then, we can define an estimate of the density function by

f̂ edf
n (u) =

1

n

n∑
i=1

δ(u− xi)

since the following relationship holds∫
R
1(t ≤ u)f̂ edf

n (dt) = F̂n(u).

Observe that for a differentiable distribution F (u) with corresponding density f(u), we have that

F (u) =

∫ u

−∞
f(t)dt =

∫
R
1(t ≤ u)f(t)dt.

So we can interpret the f̂ edf
n (u) as a derivative of the non-differentiable F̂n(u). However, there

is a problem with using this f̂ edf
n (u) as an estimate of the density. It essentially places all the

density mass at points where the data xi has been measured; the density is zero at every other
point on the real line. This is not a good estimate of the density because if we know that our
unknown density is continuous, then we would rather have an estimate that interpolates between
measured data points.

3.1 Example: Telephone Call Data

Suppose the lengths of calls at a call center are

{0.66, 0.05, 0.27, 1.26, 1.51, 0.38, 1.79, 0.94, 0.48, 0.89}.
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Q: Plot the estimated pdf using the derivative of the empirical distribution function.

A: We plot the location of each data point and give the Dirac delta an amplitude of 1/n =
1/10 = 0.1.

4 Histograms

The simplest estimate of the density is instead a histogram. The idea of a histogram is to

1. begin by specifying a support for the distribution, meaning specifying the range over which
the density is non-zero; suppose we specify that the support is [u, v];

2. next specify a set of bins partitioning the support, meaning specifying a set of strictly
increasing values b0 = u < b1 < . . . < bN = v that start at u and end at v;

3. we count the number of data points falling into each bin; specifically, we define

Cj =
n∑

i=1

1(bj−1 ≤ xi < bj), for j = 1, . . . , N − 1

CN =
n∑

i=1

1(bN−1 ≤ xi ≤ bN).

4. finally, we define our histogram estimate of the density by

f̂ his
n (u) =


Cj

n(bj−bj−1)
, if bj−1 ≤ u < bj

CN

n(bN−bN−1)
, if u = bN

0, otherwise

Note that instead of specifying the edges of the bins b0, . . . , bN , we could have instead specified
the desired number of bins N and set the bin edges to be bj = u+ j · (v − u)/N .
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4.1 Example: Telephone Call Data

Suppose the lengths of calls at a call center are

{0.66, 0.05, 0.27, 1.26, 1.51, 0.38, 1.79, 0.94, 0.48, 0.89}.

Q: Plot the histogram using bin edges {0, 0.5, 1, 1.5, 2, 10}.

A: We first count the number of data points falling into each bin. We have 4,3,1,2,0 points
in bins 0–0.5, 0.5–1, 1–1.5, 1.5–2, 2–10, respectively. The next step is to use the formulate

Cj

n(bj−bj−1)
to normalize the data counts:

4
10·(0.5−0) = 0.8

3
10·(1−0.5) = 0.6

1
10·(1.5−1) = 0.2

2
10·(2−1.5) = 0.4

0
10·(10−2) = 0

Finally, we plot the histogram:
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This top plot is the histogram, and the bottom plot compares the histogram to the actual pdf
that was used to generate the data.

4.2 Example: Image Exposure

Histograms are useful in taking and editing digital photographs. For instance, an image with
correct exposure and its histogram is:

An overexposed image and its histogram is:
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An underexposed image and its histogram is:

5 Kernel Density Estimation

5.1 Motivation

Histogram estimates of the density f(u) are not continuous, and so it is interesting to consider
other approaches that produce continuous estimates of the density. One idea is to combine
the idea of a histogram with the density estimate (written in terms of Dirac deltas) that was
generated by differentiating the empirical distribution function. To start, recall that the problem
of the density estimate generated by the empirical distribution function

f̂ edf
n (u) =

1

n

n∑
i=1

δ(u− xi)

is that it is zero at all points except the xi where data was seen. The next thing to note is that
the histogram works by giving width to counting the amount of data in some region; the Dirac
deltas were problematic because they give zero width to counting data in some region.

5.2 Kernel Function

Given these two ideas, a proposal for another approach to estimate the density is to give the
Dirac deltas some width by replacing them by copies of a kernel function K(·) : R→ R that has

• finite support: K(u) = 0 for |u| ≥ 1;

• even symmetry: K(u) = K(−u);
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• positive values: K(u) > 0 for |u| < 1;

• unit integral:
∫
RK(u)du = 1.

Furthermore, we would like to be able to specify the width of the copies of the kernel functions.
We will use the variable h to denote bandwidth, and note that the function 1

h
K(u/h) has

• support over [−h, h];

• even symmetry 1
h
K(u/h) = 1

h
K(−u/h);

• positive values 1
h
K(u/h) > 0 for |u| < h;

• unit integral:
∫
R

1
h
K(u/h)du = 1;

• maximum value of 1
h
maxuK(u).

An important conceptual point is that 1
h
K(u/h) weakly converges to a Dirac delta when h→ 0.

It is interesting to consider some examples of kernel functions. The table below lists some common
examples:

Kernel Function Equation

Uniform K(u) = 1
2
1(|u| ≤ 1)

Triangular K(u) = (1− |u|)1(|u| ≤ 1)
Epanechnikov K(u) = 3

4
(1− |u|2)1(|u| ≤ 1)

Quartic/biweight K(u) = 15
16
(1− |u|2)21(|u| ≤ 1)

The Epanechnikov kernel is plotted below, and the other kernel functions essentially look the
same.
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5.3 Estimate

The corresponding estimate of the density is then given by

f̂ kde
n (u) = f̂ edf

n (u) ∗ 1
h
K(u/h),

where the symbol ∗ denotes a convolution. Recall that a convolution of two functions f, g is
defined as

f(x) ∗ g(x) =
∫
R
f(τ) · g(τ − x)dτ.

In our context, we can simplify the convolution integral, which results in the following equivalent
equation for the density estimate

f̂ kde
n (u) =

1

nh

n∑
i=1

K

(
u− xi
h

)
.

The kernel density estimate naturally generalizes to higher dimensions:

f̂ kde
n (u) =

1

nhd

n∑
i=1

K

(
‖u− xi‖

h

)
,

where d is the dimension of the random variables (i.e., xi ∈ Rd).

5.4 Example: Telephone Call Data

Suppose the lengths of calls at a call center are

{0.66, 0.05, 0.27, 1.26, 1.51, 0.38, 1.79, 0.94, 0.48, 0.89}.

Q: Suppose we choose h = 0.5, and that we use the Epanechnikov kernel. Compute the esti-
mated pdf using the kernel density approach at the point u = 0.7.

A: We first compute the quantities K
(
u−xi

h

)
for each data point. We have

K((0.7− 0.66)/0.5) = K(0.08) = 3/4 · (1− 0.082) = 0.7452

K((0.7− 0.05)/0.5) = K(1.3) = 0

K((0.7− 0.27)/0.5) = K(0.86) = 3/4 · (1− 0.862) = 0.1953

K((0.7− 1.26)/0.5) = K(−1.12) = 0

K((0.7− 1.51)/0.5) = K(−1.62) = 0

K((0.7− 0.38)/0.5) = K(0.64) = 3/4 · (1− 0.642) = 0.4428

K((0.7− 1.79)/0.5) = K(−2.18) = 0

K((0.7− 0.94)/0.5) = K(−0.48) = 3/4 · (1− 0.482) = 0.5772

K((0.7− 0.48)/0.5) = K(0.44) = 3/4 · (1− 0.442) = 0.6048

K((0.7− 0.89)/0.5) = K(−0.38) = 3/4 · (1− 0.382) = 0.6417
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Finally, we compute

f̂ kde
n (0.7) =

1

nh

n∑
i=1

K

(
0.7− xi

h

)
=

0.7452 + 0.1953 + 0.4428 + 0.5772 + 0.6048 + 0.6417

10 · 0.5
= 0.64.

Plotting the kernel density estimate (KDE) by hand is difficult. A computer is typically used, and
standard packages exist to do this. One important point is that the estimate is sensitive to the
value of the bandwidth. Unfortunately, the bandwidth cannot be chosen using cross-validation.
An example of the estimated density for three different values of h and compared to the true pdf
is shown below:
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