IEOR 165 – Lecture 1 Probability Review

1 Defining Probability

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consists of three elements:

- A sample space Ω is the set of all possible outcomes.
- The σ -algebra \mathcal{F} is a set of events, where an event is a set of outcomes.
- The measure $\mathbb P$ is a function that gives the probability of an event. This function $\mathbb P$ satisfies certain properties, including: $\mathbb P(A) \geq 0$ for an event A, $\mathbb P(\Omega) = 1$, and $\mathbb P(A_1 \cup A_2 \cup \ldots) = \mathbb P(A_1) + \mathbb P(A_2) + \ldots$ for any countable collection A_1, A_2, \ldots of mutually exclusive events.

1.1 Example: Flipping a Coin

Suppose we flip a coin two times. Then the sample space is

$$\Omega = \{HH, HT, TH, TT\}.$$

The σ -algebra $\mathcal F$ is given by the power set of Ω , meaning that

$$\mathcal{F} = \big\{ \emptyset, \{HH\}, \{HT\}, \{TH\}, \{TT\}, \{HH, HT\}, \{HH, TH\}, \\ \{HH, TT\}, \{HT, TH\}, \{HT, TT\}, \{TH, TT\}, \\ \{HH, HT, TH\}, \{HH, HT, TT\}, \{HH, TH, TT\}, \\ \{HT, TH, TT\}, \{HH, HT, TH, TT\} \big\}.$$

One possible measure \mathbb{P} is given by the function defined as

$$\mathbb{P}(HH) = \mathbb{P}(HT) = \mathbb{P}(TH) = \mathbb{P}(TT) = \frac{1}{4}.$$
 (1)

Recall that an outcome is an element of Ω , while an event is an element of \mathcal{F} .

1.2 Consequences of Definition

Some useful consequences of the definition of probability are:

- For a sample space $\Omega = \{o_1, \dots, o_n\}$ in which each outcome o_i is equally likely, it holds that $\mathbb{P}(o_i) = 1/n$ for all $i = 1, \dots, n$.
- ullet $\mathbb{P}(\overline{A})=1-\mathbb{P}(A)$, where \overline{A} denotes the complement of event A.

- For any two events A and B, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- Consider a finite collection of mutually exclusive events B_1, \ldots, B_m such that $B_1 \cup \ldots \cup B_m = \Omega$ and $\mathbb{P}(B_i) > 0$. For any event A, we have $\mathbb{P}(A) = \sum_{k=1}^m \mathbb{P}(A \cap B_k)$.

2 Conditional Probability

The conditional probability of A given B is defined as

$$\mathbb{P}[A|B] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Some useful consequences of this definition are:

• Law of Total Probability: Consider a finite collection of mutually exclusive events B_1, \ldots, B_m such that $B_1 \cup \ldots \cup B_m = \Omega$ and $\mathbb{P}(B_i) > 0$. For any event A, we have

$$\mathbb{P}(A) = \sum_{k=1}^{m} \mathbb{P}[A|B_k]\mathbb{P}(B_k).$$

• Bayes's Theorem: It holds that

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A|B]\mathbb{P}(B)}{\mathbb{P}(A)}.$$

2.1 Example: Flipping a Coin

Suppose we flip a coin two times. Then by definition,

$$\mathbb{P}[HT \mid \{HT, TH\}] = \frac{\mathbb{P}(HT \cap \{HT, TH\})}{\mathbb{P}(\{HT, TH\})} = \frac{\mathbb{P}(HT)}{\mathbb{P}(\{HT, TH\})} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}.$$

And an example of applying Bayes's Theorem is

$$\mathbb{P}[\{HT, TH\} \mid HT] = \frac{\mathbb{P}[HT \mid \{HT, TH\}] \cdot \mathbb{P}(\{HT, TH\})}{\mathbb{P}(HT)} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{4}} = 1.$$

3 Independence

Two events A_1 and A_2 are defined to be independent if and only if $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$. Multiple events A_1, A_2, \dots, A_m are mutually independent if and only if for every subset of events

$${A_{i_1},\ldots,A_{i_n}}\subseteq {A_1,\ldots,A_m},$$

the following holds:

$$\mathbb{P}(\cap_{k=1}^n A_{i_k}) = \prod_{k=1}^n \mathbb{P}(A_{i_k}).$$

Multiple events A_1, A_2, \ldots, A_m are pairwise independent if and only if every pair of events is independent, meaning $\mathbb{P}(A_n \cap A_k) = \mathbb{P}(A_n)\mathbb{P}(A_k)$ for all distinct pairs of indices n, k. Note that pairwise independence does not always imply mutual independence! Lastly, an important property is that if A and B are independent and $\mathbb{P}(B) > 0$, then $\mathbb{P}[A|B] = \mathbb{P}(A)$.

3.1 Example: Flipping a Coin

The events $\{HH, HT\}$ and $\{HT, TT\}$ are independent because

$$\mathbb{P}(\{HH, HT\} \cap \{HT, TT\}) = \mathbb{P}(\{HT\}) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(\{HH, HT\}) \cdot \mathbb{P}(\{HT, TT\}).$$

In other words, the measure \mathbb{P} is defined such that the result of the first coin flip does not impact the result of the second coin flip.

However, the events $\{HH, HT\}$ and $\{TT\}$ are *not* independent because

$$\mathbb{P}(\{HH, HT\} \cap \{TT\}) = \mathbb{P}(\emptyset) = 0 \neq \frac{1}{2} \cdot \frac{1}{4} = \mathbb{P}(\{HH, HT\}) \cdot \mathbb{P}(\{TT\}).$$

Intuitively, if the event $\{HH,HT\}$ is observed, then this means the first flip is H. As a result, we know that $\{TT\}$ cannot also occur. Restated, observing $\{HH,HT\}$ provides information about the chances of observing $\{TT\}$. In contrast, observing $\{HH,HT\}$ does not provide information about the chances of observing $\{HT,TT\}$.

4 Random Variables

A random variable is a function $X(\omega):\Omega\to\mathcal{B}$ that maps the sample space Ω to a subset of the real numbers $\mathcal{B}\subseteq\mathbb{R}$, with the property that the set $\{w:X(\omega)\in b\}=X^{-1}(b)$ is an event for every $b\in\mathcal{B}$. The cumulative distribution function (cdf) of a random variable X is defined by

$$F_X(u) = \mathbb{P}(\omega : X(\omega) \le u).$$

The probability density function (pdf) of a random variable X is any function $f_X(u)$ such that

$$\mathbb{P}(X \in A) = \int_A f_X(u) du,$$

for any well-behaved set A.

4.1 Example: Flipping a Coin

Suppose we flip a coin two times. One example of a random variable is the function

$$X(\omega) = \text{number of heads in } \omega.$$

The cdf is given by

$$F_X(u) = \begin{cases} 0, & \text{if } u < 0\\ \frac{1}{4}, & \text{if } 0 \le u < 1\\ \frac{3}{4}, & \text{if } 1 \le u < 2\\ 1, & \text{if } u > 2 \end{cases}$$

The pdf is given by

$$f_X(u) = \frac{1}{4} \cdot \delta(u-0) + \frac{1}{2} \cdot \delta(u-1) + \frac{1}{4} \cdot \delta(u-2),$$

where $\delta(\cdot)$ is the Dirac delta function. Formally, the Dirac delta function is defined as a measure such that

$$\delta(A) = \begin{cases} 1, & \text{if } 0 \in A \\ 0, & \text{otherwise} \end{cases}$$

Informally, the Dirac delta function is a function defined such that

$$\delta(u) = \begin{cases} 0, & \text{if } u \neq 0 \\ +\infty, & \text{if } u = 0 \end{cases}$$

and

$$\int_{-\infty}^{+\infty} g(u)\delta(u)du = g(0).$$

5 Expectation

The expectation of g(X), where X is a random variable and $g(\cdot)$ is a function, is given by

$$\mathbb{E}(g(X)) = \int g(u) f_X(u) du.$$

Two important cases are the mean

$$\mu(X) = \mathbb{E}(X) = \int u f_X(u) du,$$

and variance

$$\sigma^{2}(X) = \mathbb{E}((X - \mu)^{2}) = \int (u - \mu)^{2} f_{X}(u) du.$$

Two useful properties are that if λ, k are constants, then

$$\mathbb{E}(\lambda X + k) = \lambda \mathbb{E}(X) + k$$
$$\sigma^{2}(\lambda X + k) = \lambda^{2} \sigma^{2}(X).$$

5.1 Example: Flipping a Coin

Suppose we flip a coin two times, and consider the random variable

$$X(\omega) = \text{number of heads in } \omega.$$

Recall that the pdf is given by

$$f_X(u) = \frac{1}{4} \cdot \delta(u-0) + \frac{1}{2} \cdot \delta(u-1) + \frac{1}{4} \cdot \delta(u-2).$$

The mean is

$$\int u f_X(u) du = \int u \cdot \left(\frac{1}{4} \cdot \delta(u-0) + \frac{1}{2} \cdot \delta(u-1) + \frac{1}{4} \cdot \delta(u-2)\right) du = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 = 1.$$

The variance is

$$\int (u-\mu)^2 f_X(u) du = \int (u-1)^2 \cdot \left(\frac{1}{4} \cdot \delta(u-0) + \frac{1}{2} \cdot \delta(u-1) + \frac{1}{4} \cdot \delta(u-2)\right) du = \frac{1}{4} \cdot (0-1)^2 + \frac{1}{2} \cdot (1-1)^2 + \frac{1}{4} \cdot (2-1)^2 = \frac{1}{2}.$$

6 Common Distributions

6.1 Uniform Distribution

A random variable X with uniform distribution over support [a,b] is denoted by $X \sim \mathcal{U}(a,b)$, and it is the distribution with pdf

$$f_X(u) = \begin{cases} \frac{1}{b-a}, & \text{if } u \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$
.

The mean is $\mu=(a+b)/2$, and the variance is $\sigma^2=(b-a)^2/12$.

6.2 Bernoulli Distribution

A random variable X with a Bernoulli distribution with parameter p has the pdf: $\mathbb{P}(X=1)=p$ and $\mathcal{P}(X=0)=1-p$. The mean is $\mu=p$, and the variance is $\sigma^2=p(1-p)$.

6.3 Binomial Distribution

A random variable X with a binomial distribution with n trials and success probability p has the pdf

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \text{ for } k \in \mathbb{Z}.$$

This distribution gives the probability of having k successes (choosing the value 1) after running n trials of a Bernoulli distribution. The mean is $\mu = np$, and the variance is $\sigma^2 = np(1-p)$.

6.4 Gaussian/Normal Distribution

A random variable X with Guassian/normal distribution and mean μ and variance σ^2 is denoted by $X \sim \mathcal{N}(\mu, \sigma^2)$, and it is the distribution with pdf

$$f_X(u) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(u-\mu)^2}{2\sigma^2}\right).$$

For a set of iid (mutually independent and identically distributed) Gaussian random variables $X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, consider any linear combination of the random variables.

$$S = \lambda_1 X_1 + \lambda_2 X_2 + \ldots + \lambda_n X_n.$$

The mean of the linear combination is

$$\mathbb{E}(S) = \mu \cdot \sum_{i=1}^{n} \lambda_i,$$

and the variance of the linear combination is

$$\sigma^2(S) = \sigma^2 \cdot \sum_{i=1}^n \lambda_i^2.$$

Note that in the special case where $\lambda_i = 1/n$ (which is also called a sample average):

$$\overline{X} = 1/n \cdot \sum_{i=1}^{n} X_i$$

we have that $\mathbb{E}(\overline{X}) = \mathbb{E}(X)$ and $\sigma^2(\overline{X}) = \sigma^2/n$ (which also implies that $\lim_{n\to\infty} \sigma^2(\overline{X}) = 0$).

6.5 Chi-Squared Distribution

A random variable X with chi-squared distribution and k-degrees of freedom is denoted by $X \sim \chi^2(k)$, and it is the distribution of the random variable defined by

$$\sum_{i=1}^{k} Z_i^2,$$

where $Z_i \sim \mathcal{N}(0,1)$. The mean is $\mathbb{E}(X) = k$, and the variance is $\sigma^2(X) = 2k$.

6.6 Exponential Distribution

A random variable X with exponential distribution is denoted by $X \sim \mathcal{E}(\lambda)$, where $\lambda > 0$ is the rate, and it is the distribution with pdf

$$f_X(u) = \begin{cases} \lambda \exp(-\lambda u), & \text{if } u \ge 0, \\ 0 & \text{otherwise} \end{cases}.$$

The cdf is given by

$$F_X(u) = \begin{cases} 1 - \exp(-\lambda u), & \text{if } u \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

and so $\mathbb{P}(X>u)=\exp(-\lambda u)$ for $u\geq 0$. The mean is $\mu=\frac{1}{\lambda}$, and the variance is $\sigma^2=\frac{1}{\lambda^2}$. One of the most important aspects of an exponential distribution is that is satisfies the memoryless property:

$$\mathbb{P}[X>s+t|X>t]=\mathbb{P}(X>s), \text{for all values of } s,t\geq 0.$$

6.7 Poisson Distribution

A random variable X with a Poission distribution with parameter λ has a pdf

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} \exp(-\lambda), \text{ for } k \in \mathbb{Z}.$$

The mean is $\mu = \lambda$, and the variance is $\sigma^2 = \lambda$.