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Markov Processes Hypothesis Testing

Basics Berkeley
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A Markov process is a process in which the probability of being in a
future state conditioned on the present state and past states is equal to
the probability of being in a future state conditioned only on the present
state:

P(Xn+1 :j|Xn = i7Xn—1 =lp_1,--- aXl = Z.leO = Z0)
—P(Xps1 = j| X = i) = Py

If the process is in state 4, there is a fixed probability that it will move to
state j with probability P;; and it is independent of the past history.

If the weather tomorrow only depends on the weather today, then it is
reasonable to model the weather transitions as a Markov process.
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Markov Processes Hypothesis Testing

Basics Berkeley
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Key elements: state space, time and initial conditions

m State space: discrete or continuous

m Weather: {S,R,C}
m Location on a 2D plane: R x R

m Time:
m Discrete: X,,, n=0,1,2,...
m Continuous: X (¢), t >0
m Initial conditions
B P(Xg=1i)=q
m > . a; =1 (the process must be in some state initially)

The process must make a transition to some state
Z Pj=1 Vi
J
Transition matrix and transition graph
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Markov Processes Hypothesis Testing

Transition Matrix & Graph Berkeley

Example: Assume a Markov chain can be used to model a student’s
progress at UC Berkeley. In each academic year, if an undergraduate
student is at UC Berkeley, then at the end of the same year he/she is two
times more likely to successfully pass the academic year than failing the
year (under failing we mean he/she will stay at the same grade next
year). Also, he is three times less likely to leave UC Berkeley than failing
the academic year (leaving means leaving before graduation).

— Show the transition matrix and transition graph.
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Markov Processes Hypothesis Testing

Estimate Transition Probability

MLE estimator:
N;:

jp—
TNy

In the last example, assume we have 5000 freshmen this year and

Berkeley

suppose 4600 of them successfully pass the first year and 380 of them

fail, what transition probabilities can you estimate from this data?
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m Hypothesis is a statement about a population parameter
m Null hypothesis and alternative hypothesis, one of them is true

m Collect a random sample

m Develop a test statistic and calculate it based on the sample

m Use this test statistic to make the decision whether to accept ot
reject the null hypothesis

m p-value: the probability of obtaining a result equal to or more
extreme than what was actually observed, assuming that the model
is true.

m Large p-value means the observation is more likely to happen
under the null hypothesis (accept)

m Small p-value indicates the observation can not be well
explained by the null hypothesis (reject)

m Level of significance a: the probability of (falsely) rejecting the null
hypothesis when the null hypothesis is true. Popular choices: 0.05
and 0.01, what's the effect of choosing a smaller a?
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Markov Processes Hypothesis Testing

Basics Berkeley

Specify a significance level o and compare the calculated p-value with «
m p-value< a: reject the null hypothesis
m p-value> a: accept the null hypothesis

In the coin-flipping example
m The null hypothesis is that the coin is fair:

Hy: p(H)=0.5 Hy: p(H)#0.5
m The test statistic is the number of heads in the experiment: 40 (the

distribution of this test statistic is known: binomial)

m p-value is the probability of getting more extreme test statistics than
the observation under the null hypothesis:
P(Nyg <40 or Ny > 60| p(H) = 0.5) = 0.0569

m With significance level @ = 0.05, accept the null hypothesis
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Markov Processes Hypothesis Testing

One-Tailed vs. Two-Tailed Berkeley

Two-tailed test: deviation is in both directions
Ho: p=1 Hy: p#1
One-tailed test: deviation is in one direction
Hy: p=1(pu<1) Hy:p>1

or
Hy: p=1(@p=>1) Hy:pu<l

Example 1: The manufacturer of a new fiberglass tire claims that its
average life will be at least 40000 miles.

Example 2: A public health official claims that the mean home water use
is 350 gallons a day.
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p-value in One-Tailed and Two-Tailed tests

(a) (b) (@

Values Values Values

Figure: The distribution of test statistics.

Match (a), (b), (c) to the aforementioned three hypothesis tests
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Markov Processes Hypothesis Testing

/-statistics vs. t-statistics

Assume the data follows the normal distribution
m If the population variance is known, we use the Z-statistic:

X — o
a/vn

m If the population variance is not known, we use the t-statistic:

~ N(0,1)

X — o

s/v/n

where s2 is the sample variance

2o 1 > (X - X)?
i=1

~tp1

n—1

1. Both standard normal distribution and t-distribution are symmetric!
2. Even when the underlying distribution is not normal, we may also use
Z-statistics or t-statistics because they can nicely approximate the

p-value when sample size is very large.
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Markov Processes Hypothesis Testing

Z-statistics vs. t-statistics Berkeley

UNIVE

Example 8.3h: A public heath official claims that the mean home water
use is 350 gallon a day. To verify this statement, a study of 20 randomly
selected homes was instigated with the result that the average daily
waters uses of these 20 homes were as follows:

340 344 362 375
356 386 354 364
332 402 340 355
362 322 372 324
318 360 338 370
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Calculation Details Berkeley
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Consider
Ho: p=10 Hy: p#10

You obtain a Z-statistic as 1.87, then the p-value is

P(|1Z| > 1.87) = P(Z > 1.87) + P(Z < —1.87)
= 2P(Z > 1.87) = 2(1 — P(Z < 1.87))
= 2(1 —0.9693) = 0.0614

With a = 0.05, we fail to reject the null hypothesis.
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/-table

IEOR165 Discussion

Markov Processes Hypothesis Testing

Normal probability table

Z | 0.00 001 0.02 0.07 0.0  0.09
0.0 | 0.5000 05040 0.5080 05279 05319 0.5359
0.1 | 0.5308 05138  0.5478 05675 05714 0.5753
0.2 | 0.5703 05832 0.5871 0.6064 06103  0.6141
0.3 | 06179 06217 06255 06443 06450  0.6517
0.4 | 06554 0.6591  0.6628 06508 06844 06579
0.5 | 0.6915  0.6950 0.6085 07157 07190 0.7224
0.6 | 0.7257 07291 07324 07357 07380 | 07422 07454 07486 07517 07549
0.7 | 0.7580 07611 07642 07673 07704 | 07734 07764 07704 07823 07852
0.8 | 07881 0.7910 07939  (.7967 0.7995 | 0.8023 08051 08078 08106 0.8133
0.9 | 08150 08186 05212 (8238 05264 | 08280 08315 08340 05365 (8380
1.0 | 08413 08438 08461 08485 08508 | 08531 08554 (.8577 08599 (.8621
1.1 | 08643 08665 0868 08708 05720 | 08749 Q8770 0.8790 08810  0.8830
1.2 | 08840 0.8860 08888 08007 05025 | 06044 08062 08980 08097  0.9015
1.3 | 09032 00049 09066 00082 09090 | 00115 09131 00147 09162 0.9177
1.4 [omo2 00207 092 09236 0951 | 00265 09279 09292 09306 09319
L5 [ 09332 00345 08857 00370 00382 | 00394 09406 0.0418 09420 0.9441
1.6 | 09452 00463 05474 00484 09495 | 0.0505 09515 09525 09535  0.9545
L7 | 09554 00564 00573 00582 00501 | 0.0500 3
1.8 | 09641 09649 0965 00664 09671 | 0.9678 . .

1.9 | 09713 00719 09726 009732 09738 | 09744 09750 00736 09761  0.9767
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Markov Processes Hypothesis Testing

Calculation Details Berkeley

Consider
Hy: p>10 Hp: p<10

You obtain a Z-statistics -1.92, then the p-value is

P(Z < —1.92) = P(Z > 1.92)
=1-P(Z < 1.92) = 0.0274

With a = 0.05, we reject the null hypothesis.
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