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About 1st Homework Berkeley

UNIVERSITY OF CALIFORNIA

m For method of moments, understand the difference between
wi fui 0 0
m For uniform distribution on (61, 62), understand why
0y > fi1 > 6,

m Solution will be posted online
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Maximum A Posterior

Revisit Maximum A Posterior (MAP)

X0
f01X) = 70X)
0
Posterior = likelihood - prior

evidence

m MLE: maximum likelihood f(X|0)

Oprr = argmax f(X|0) = argmax log f(X|0)
m MAP: maximum posterior f(6]|X)

Orrap = argmax f(A|X) = argmax log f(0]X)

= argmax {log f(X10) + log g(0)}
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MLE vs MAP Berkeley

UNIVERSITY OF CALIFORNIA

(Based on Avinash Kak, 2014) Let X;,..., X,, be a random sample. For
each 7, the value of X; can be either Clinton or Sanders. We want to
estimate the probability p that a democrat will vote Clinton in the
primary.

m Given a p, X; will follow a Bernoulli distribution:

f(X; = Clinton|p) = p

f(X; =Sanders|p) =1—1p
m What is the MLE?
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MLE vs MAP Berkeley

UNIVERSITY OF CALIFORNIA

Now consider the MAP:
m What should be the prior?
m The prior should be within the interval [0, 1] (common knowledge)
m Different people can have different beliefs about the prior: where

should the prior peak? what should be the variance?
m Here, we take the Beta prior:

1

g(p) = ml’ )ﬁ_l

p ~ Beta(a, B) : N

- D

where B(a, 8) is the beta function. The mode for the Beta

distribution is
a—1

a+p—2
And the variance is
af
(a+ B2+ B+1)

m Choose the parameters for the prior as o = 3 = 5.
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MLE vs MAP Berkeley

UNIVERSITY OF CALIFORNIA

m Derive the MAP.

m If we have a sample of size n = 100 with 60 of them saying that
they will vote for Sanders. Then what's the difference between the
estimates of p using MLE and MAP?

IEOR165 Discussion Sheng Liu 7



Ist Homework Revisit Maximum A Posterior Regularization

Motivation Berkeley

UNIVERSITY OF CALIFORNIA

Why do we want to impose regularization on OLS?
m Tradeoff between bias and variance: OLS is unbiased but variance
may be high
m n < p, when the observation is not enough, OLS may fail
m Collinearity: when predictors are correlated, the variance of OLS is
significantly high

m Adding regularization will introduce bias but lower the variance

m Model interpretability

m Adding more predictors is not always good, it increases the
complexity of the model and thus makes it harder for us to extract
useful information

m Regularization (shrinkage) will make some coefficients approaching
zero and select the most influential coefficients (and corresponding
predictors) from the model
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Regularization Berkeley

UNIVERSITY OF CALIFOY

m Ridge regression: [y-norm regularization

B = arg min Y — XB|I5+ AllBII5
n p P
= arg min Z(yz = Bo— Zﬁjxij)Q + )‘ZBJZ
i=1 j=1 J=1

m Lasso: l;-norm regularization

B =argmin ||Y — X812+ A|8|h
n P p
= argmin 2:(34z —Bo — Zﬁjxij)Q + AZ 151
i=1 j=1 J=1

m Elastic net: combination of I;-norm and l3-norm regularization

B = argmin |[Y = XB|13 + Al|BI[5 + 18]
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Credit Data Example Berkeley
(Gareth, et al. 2013) Given a dataset that records
m Balance
m Age
m Cards (Number of credit cards)
m Education (years of education)
m Income
m Limit (credit limit)
m Rating (credit rating)
m Gender
m Student (whether a student or not)
m marital status
m ethnicity

Let Balance be the response and all other variables be predictors.
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Credit Data Example Berkeley

UNIVERSITY OF CALIFORNIA
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.
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Ridge Regression

Standardized Coefficients
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for

the Credit data set, as a function of A and ||5%2/1|8]|=.
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Lasso Berkeley

UNIVERSITY OF CALIFORNIA
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FIGURE 6.6. The smndamfzzed, Easso coefficients on the Credit data set are
shoun as a function of A and ||5%)1/]5]:.

At 1B 4

Lasso does variable selection, and gives sparse model.
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Lasso Berkeley

UNIVERSITY OF CALIFORNIA

= | - o

= ~ . 2 - s
a2 = | . a8 - ’
§ = \ 5 37 P
£ g . £ =z ’
o N " D N _ -
Q L= -
0 2| D oz | _
s ° N - = -
8 ~ k| -
3 o+ 3 = 4
| & _
B J 2 2] — Income
o ] I - - - Limit
g ] "

g 4 -~ Rating

b

s Student
T T T T T T T T L4 T T T T T T
20 50 100 200 500 2000 5000 0.0 02 04 06 08 10
STATINITE:
A &5 11/ 112115
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At 1B 4

Lasso does variable selection, and gives sparse model.
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Elastic Net Berkeley
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The path for Limit and Rating are very similar.
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Choose A Berkeley

UNIVERSITY OF CALIFORNIA

Cross-Validation
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