IEOR 265 – Learning and Optimization Spring 2015

Instructor:	Anil Aswani 4119 Etcheverry Office hours – TuTh 9-10A aaswani@berkeley.edu
GSI:	Siyuan Sun sysun@berkeley.edu
Lectures:	TuTh 2-330P, 56 Barrows
Website:	http://ieor.berkeley.edu/~ieor265/
Prerequisites:	Course on optimization; course on statistics or stochastic processes
Grading:	4 homeworks (50%) ; class project (50%)
Description:	This course will cover topics related to the interplay between optimiza- tion and statistical learning. The first part of the course will cover statistical modeling procedures that can be defined as the minimizer of a suitable optimization problem. The second part of the course will dis- cuss the formulation and numerical implementation of learning-based model predictive control (LBMPC), which is a method for robust adap- tive optimization that can use machine learning to provide the adapta- tion. The last part of the course will deal with inverse decision-making problems, which are problems where an agent's decisions are observed and used to infer properties about the agent.
Class Project:	The projects can be in the form of a literature review, a comprehensive application of data analysis methods, or involve the exploration of orig- inal research ideas. The project should be chosen in consultation with the course instructor, and a project proposal (one page summary) is due on March 3, 2015. The project report (10-12 pages) is due on the last day of lecture May 7, 2015. Joint projects, involving reasonably sized groups, are allowed.

Outline: Specific topics that will be covered include:

- Regression
 - Classical M-estimators (e.g., ordinary least squares, maximum likelihood estimation)
 - High-dimensional M-estimators (e.g., lasso or L1 regression, nuclear norm minimization)
 - Collinearity (e.g., ridge regression, exterior derivative estimation)
 - Semiparametric regression of partially linear models and Nadaraya-Watson regression
- Learning-Based Model Predictive Control (LBMPC)
 - Robustness (e.g., Berge maximum theorem, Lyapunov theory, reachability analysis)
 - Consistent approximations (e.g., semicontinuity, epiconvergence)
 - Oracle design (e.g., L2 regularized Nadaraya-Watson estimator)
 - Software code generation (e.g., numerical optimization solvers, heuristic reachability analysis)
- Inverse Decision-Making Problems
 - Inverse reinforcement learning (e.g., Markov Decision Processes, apprenticeship learning)
 - Learning objective/utility functions (e.g., bilevel programming, single level reformulations using KKT conditions)
 - Learning utilities from game-theoretic equilibria described by variational inequalities (e.g., parametric utilities, nonparametric utilities)