
IEOR 265 – Lecture 9

Other Models

1 Single-Index Model

Recall the following single-index model

yi = g(x′

iβ) + ǫi,

where yi ∈ R, xi, β ∈ R
p, g(·) is an unknown nonlinear function, and ǫi are noise. The data

xi are i.i.d., and the noise has conditionally zero mean E[ǫi|xi] = 0. Such single-index models
can be used for asset pricing, and here the g(·) can be thought of as an infinite-dimensional
nuisance parameter.

The difficulty in this situation is that the function g : R → R is unknown, because
otherwise we could simply use nonlinear least squares

β̂ = argmin
β

n
∑

i=1

(yi − g(x′

iβ))
2

to provide an estimate of β. Because g(·) is not known, one possible approach is to begin
with nonlinear least squares and replace g(·) with something that looks similar. If we define

β̂ = argmin
η

n
∑

i=1

(yi − E[yi|z = x′

iη])
2 = argmin

η

n
∑

i=1

(yi − E[g(x′

iβ)|z = x′

iη])
2

Now we do not know E[g(x′

iβ)|z = x′

iη], but we could estimate this using the trimmed version
of Nadaraya-Watson. (Strictly speaking, the standard estimator uses a leave-one-out version
of the Nadaraya-Watson estimator in which the i-th data is excluded when estimating at i,
but this change does not affect the convergence results.)

One reason this estimator is interesting is that the objective of the defining optimization
involves an estimate itself, and it is an example of an adaptive optimization problem. This
approach cannot always be used, but it turns out that the Nadaraya-Watson estimator is a
good choice for doing so. This will be discussed later in the course.

2 Linear Support Vector Machine

Consider the following nonlinear model:

yi = sign(x′

iβ + β0) + ǫi,
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where yi ∈ {−1, 1}, xi, β ∈ R
p, β0 ∈ R, and ǫi is noise. We can think of the yi as labels of

each xi, and the ǫi noise represents (potential) mislabeling of each xi. The intuitive picture
is that x′

iβ + β0 = 0 defines a hyperplane that separates Rp into two parts, in which points
on one side of the hyperplane are labeled 1 while points on the other side are −1. Also note
that there is a normalization question because x′

i(γ ·β)+β0 = 0 defines the same hyperplane
for any γ > 0.

The key to identifying models is to observe that the boundaries of the half-spaces

x′

iβ + β0 ≤ −1

x′

iβ + β0 ≥ 1

are parallel to the separating hyperplane x′

iβ + β0 = 0, and the distance between these
two half-spaces is 2/‖β‖. So by appropriately choosing β, we can make their boundaries
arbitrarily close (or far) to x′

iβ + β0 = 0. Observe that for noiseless data, we would have

yi(x
′

iβ + β0) ≥ 1.

So we could define our estimate by the coefficients that maximize the distance between the
half-spaces (which is equivalent to minimizing ‖β̂‖ since the distance is 2/‖β̂‖). This would
be given by

[

β̂0

β̂

]

= argmin
β0,β

‖β‖2

s.t. yi(x
′

iβ + β0) ≥ 1, ∀i.

This formulation assumes there is no noise. But if there is noise, then we could modify
the optimization to

[

β̂0

β̂

]

= argmin
β0,β

‖β‖2 + λ
n

∑

i=1

ui

s.t. yi(x
′

iβ + β0) ≥ 1− ui, ∀i

ui ≥ 0

The interpretation is that ui captures errors in labels. If there are no errors, then ui = 0, and
if there is high error then ui is high. The term λ

∑n

i=1
ui denotes that we would like to pick

our parameters to tradeoff maximizing the distance between half-spaces with minimizing the
amount of errors.
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3 Summary

We have covered several regression techniques:

Model Possible Techniques

Linear Ordinary Least Squares (OLS)
Nonlinear with Known Form Nonlinear Least Squares (NLS)
Nonlinear with Unknown Form Nadaraya-Watson (NW)

Local Linear Regression (LLR)
Partially Linear Model Procedure with NW + OLS
Single-Index Model Procedure with NW + OLS
Linear Classification Linear Support Vector Machine (SVM)

We have also covered several types of abstract structure:

Structure Possible Regularizations

Collinearity/Manifold Structure L2 Regularization/Ridge Regression
Exterior Derivative Estimator (EDE)

Sparsity L1 Regularization/Lasso Regression
Group Sparsity Sparse Group Lasso Regression

We can combine these regression technique and abstract structures for different scenarios.
OLS, linear SVM, and LLR can have no special structure, collinearity/manifold structure,
sparsity, group sparsity, or any combination of these. NW implicitly exploits collinear-
ity/manifold structure, and L2 regularization instead acts as another form of trimming.
NLS can have no special structure, sparsity, group sparsity, or any combination of these;
however, L2 regularization can be used with NLS to provide shrinkage for the purposes of
improving the bias-variance tradeoff.
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