
IEOR 265 – Lecture 5

Abstract Structure

1 Principal Component Analysis

Recall that the EDE estimator was defined as

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖Πβ‖22,

where Π is a projection matrix that projects onto the (p − d) smallest eigenvectors of the
sample covariance matrix 1

n
X ′X. Also recall that the PCR estimator was defined as a special

case of the EDE estimator. It is worth discussing in greater detail what Π is and what the
d largest eigenvectors of 1

n
X ′X are.

Principal component analysis (PCA) is a popular visualization and dimensionality re-
duction technique. One of its uses is to convert a complex high-dimensional data set into
a two- or three-dimensional data set, which can then be visualized to see relationships be-
tween different data points. Because the sample covariance matrix is symmetric (and positive
semidefinite), it can be diagonalized by an orthogonal matrix:

1
n
X ′X = Udiag(s1, . . . , sp)U

′,

where U ∈ R
p×p is an orthogonal matrix and s1 ≥ . . . ≥ sp ≥ 0. The idea of PCA is to

define a coordinate transformation from R
p to R

d by the following linear transformation

Td =

[

Id

0

]

U ′.

Graphically, the idea of PCA is to identify the directions of most variation of the data points
xi.

The reason that PCA is relevant to the EDE estimator is that Π is computed using
PCA. The majority of the variation of the data lies within the hyperplane with basis defined
by the column-span of Td. In the collinearity model, the exterior derivative must lie within
the this hyperplane, and so we penalize for deviation of the estimates from this hyperplane
by specifically penalizing for any component of the estimate that lies in the space orthogonal
to this hyperplane. This orthogonal component is given by Πβ, where

Π = U

[

0
Ip−d

]

U ′ = Ip − T ′

dTd.
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2 Manifold Structure

Imagine a generalization of the collinearity model previously considered. Specifically, assume
that the xi lie on an embedded submanifold M with dimension d < p, where this manifold
is unknown a priori. Suppose that the system has model yi = f(xi) + ǫi, where f(·) is an
unknown nonlinear function. The reason that this situation is interesting is that the LLR
estimate converged at rate Op(n

−2/(p+4)), but if we knew the manifold then we could do a
coordinate change into a lower-dimensional space and then the LLR estimate would converge
at rate Op(n

−2/(d+4)).
Even though this manifold is unknown, we could imagine that if we were able to somehow

learn this manifold and then incorporate this knowledge into our estimator, then we could
achieve the faster convergence rate. This is in fact the idea behind the nonparametric exterior
derivative estimator (NEDE), which is defined as

[

β̂0[x0]

β̂[x0]

]

= argmin
β0,β

∥

∥

∥

∥
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β
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∥

∥

∥

2

2

+ λ‖Πβ‖22,

where X0 = X − x′

01n, Π is a projection matrix that projects onto the (p − d) smallest
eigenvectors of the sample local covariance matrix 1

nhd+2X
′

0WhX0, and

Wh = diag (K(‖x1 − x0‖/h), . . . , K(‖xn − x0‖/h)) .

It can be shown that the error in this estimate converges at rate Op(n
−2/(d+4)), even though

the regression is being computed for coefficients that lie within a p-dimensional space. Fur-
thermore, it can be shown that β̂[x0] is a consistent estimate of the exterior derivative of f
at x0 (i.e., df |x0

). This improved convergence rate can be very useful if d ≪ p.
The idea of lower-dimensional structure either in a hyperplane or manifold context is

an important abstract structure. It is important because there are many methods that can
exploit such structure to provide improved estimation.

3 Sparsity Structure

Consider a linear model yi = x′

iβ + ǫi, where xi ∈ R
p and we have n measurements: (xi, yi)

for i = 1, . . . , n. In the classical setting, we assume that p is fixed and n increases towards
infinity. However, an interesting situation to consider is when p is roughly the same size as
(or even larger than) n. In this high-dimensional setting, many of the estimators that we
have defined are no longer consistent.

In general, this situation is hopeless. But the situation is improved given certain struc-
ture. The coefficients β of the model are s-sparse if at most s values are non-zero:

p
∑

i=1

|βi|
0 ≤ s.
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In a situation with exact sparsity, the majority of coefficients are exactly zero. This idea can
be relaxed. The coefficients β of the model are approximately-sq-sparse if

p
∑

i=1

|βi|
q ≤ sq,

for q ∈ [0, 1]. Note that in the special case where q = 0, this is the same as the condition for an
s-sparse model. The idea of approximate sparsity is that even though most of the coefficients
are non-zero, the coefficients β can be well-approximated by another set of coefficients β̃ that
are exactly sparse. Such sparsity is important because consistent estimators can be designed
for sparse models.

There are numerous extensions of sparse structure, which can be exploited. One example
is group sparsity. Suppose we partition the coefficients into blocks β′ =

[

β1′ . . . βm′
]

′

,
where the blocks are given by:

β1′ =
[

β1 . . . βk

]

β2′ =
[

βk+1 . . . β2k

]

...

βm′

=
[

β(m−1)k+1 . . . βmk

]

.

Then the idea of group sparsity is that most blocks of coefficients are zero.

4 Lasso Regression

The M-estimator which had the Bayesian interpretation of a linear model with Laplacian
prior

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖1,

has multiple names: Lasso regression and L1-penalized regression.

4.1 Computation of Lasso Regression

Computation of this estimator is a complex topic because the objective is not differentiable,
but for pedagogy we talk about how the corresponding optimization can be rewritten as a
constrained quadratic program (QP). If we use an epigraph formulation, then we can rewrite
the optimization as

β̂ = argmin
β

‖Y −Xβ‖22 + t

s.t. t ≥ λ‖β‖1.
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But because ‖β‖1 =
∑p

j=1 |βj| (by definition), we can rewrite the above optimization as a
constrained QP

β̂ = argmin
β

‖Y −Xβ‖22 + t

s.t. t ≥ λ
∑p

j=1 µj

− µj ≤ βj ≤ µj, ∀j = 1, . . . , p.

It is worth stressing that this is not an efficient way to compute Lasso regression.
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