
IEOR 265 – Lecture 4

M-Estimators

1 M-Estimator

An M-estimator (the M stands for maximum likelihood-type) is an estimate that is defined
as the minimizer to an optimization problem:

β̂ = argmin
β

n
∑

i=1

ρ(xi, yi; β),

where ρ is some suitably chosen function. We have already seen examples of M-estimators.
Another example is a nonlinear least squares estimator

β̂ = argmin
β

n
∑

i=1

(yi − f(xi; β))
2

for some parametric nonlinear model yi = f(xi; β)+ ǫ. There are in fact many different cases
of M-estimators, including:

• MLE estimators;

• robust estimators;

• estimates with Bayesian priors.

One of the strengths of M-estimators is that these various components can be mixed and
matched. We have already discussed MLE estimators, and so we will next discuss robust
estimators and Bayesian priors.

1.1 Robust Estimators

One of the weaknesses of a squared loss function L(u) = u2 is that it can overly emphasize
outliers. As a result, other loss functions can be used. For instance the absolute loss
L(u) = |u| could be used. Because it is not differentiable at the origin, one could instead
use the Huber loss function

Lδ(u) =

{

u2/2, if |u| < δ

δ(|u| − δ/2), otherwise
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which is quadratic for small values and linear for large values. As a result, it is differentiable
at all values. A final example is Tukey’s biweight loss function

Lδ(u) =

{

u2/2, if |u| < δ

δ2/2, otherwise

which is quadratic for small values and constant for large values. One “weakness” of this loss
function is that it is not convex, which complicates the optimization problem since finding
the minimizer is more difficult for non-convex optimization problems.

1.2 Bayesian Priors

Consider the problem of regression for a linear model yi = x′

iβ + ǫi, and suppose that the
errors ǫi are Gaussian with zero mean and finite variance. Now imagine that we have some
Bayesian prior density for the model parameters β. There are two important cases:

• Suppose that the βi have a Bayesian prior given by a normal distribution with zero
mean and finite variance. Then the corresponding estimate is given by

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖22.

• Suppose that the βi have a Bayesian prior given by a Laplace distribution, which has
pdf

f(βi) =
λ

2
exp(−λ|βi|).

Then the corresponding estimate is given by

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖1.

2 Ridge Regression

The M-estimator which had the Bayesian interpretation of a linear model with Gaussian
prior on the coefficients

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖β‖22
has multiple names: ridge regression, L2-regularization, and Tikhonov regularization.

2.1 Computation of Ridge Regression Estimate

Computation becomes straightforward if we rewrite the objective. Observe that

‖Y −Xβ‖22 + ‖β‖22 = ‖Y −Xβ‖22 + ‖0−
√
λIpβ‖22

=

∥

∥

∥

∥

[

Y
0

]

−
[

X√
λIp

]

β

∥

∥

∥

∥

2

2

.
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Thus, the objective in the optimization used to compute the ridge regression estimate is the
same as the objective in OLS, but with “pseudo-measurements” corresponding to X̃ =

√
λIp

and Ỹ = 0 added. From the solution to OLS, we have that the ridge regression estimate is

β̂ =

(

[

X√
λIp

]′ [

X√
λIp

]

)

−1
[

X√
λIp

]′ [

Y
0

]

= (X ′X + λIp)
−1X ′Y.

2.2 Proportional Shrinkage

The ridge regression estimate has an important interpretation in the bias-variance context.
Suppose that we compute the singular value decomposition of X ∈ R

n×p:

X = USV ′

where U ∈ R
n×n, V ∈ R

p×p are orthogonal matrices and S ∈ R
n×p is a rectangular diagonal

matrix S =
[

diag(s1, . . . , sp)
′ 0
]

′

where s1 ≥ . . . ≥ sp. Then, the ridge regression estimate
can be rewritten as

β̂ = (X ′X + λIp)
−1X ′Y

= (V S ′U ′USV ′ + λIp)
−1V S ′U ′Y

= (V diag(s21, . . . , s
2

p)V
′ + λV V ′)−1V S ′U ′Y

= V diag

(

1

s21 + λ
, . . . ,

1

s2p + λ

)

V ′V S ′U ′Y

= V
[

diag
(

s1
s2
1
+λ

, . . . , sp
s2p+λ

)

0
]

U ′Y.

If λ = 0, then the estimate is just the OLS estimate. So one interpretation of the ridge
regression estimate is that we are shrinking the inverse of the singular values towards zero.
The shrinkage is proportional to the magnitude of si, meaning that the shrinkage is relatively
smaller for si versus si+1.

3 Collinearity

The usage of SVD suggests a geometric interpretation may be valuable. Consider the stan-
dard linear model yi = x′

iβ + ǫi, and further suppose that xi = z′iB + µi, where zi ∈ R
d is a

vector of “hidden” variables, d < p, B ∈ R
p×d is a matrix of coefficients, and µi is zero mean

noise with finite variance. The idea of this model is that we observe xi, but xi has smaller
dimensionality due to these variables actually being an unknown function of zi that are not
measured. We will assume that zi are Gaussian and have zero mean with finite variance. For
notational convenience, we define Z ∈ R

n×d to be the matrix whose i-th row is z′i; similarly,
we define M ∈ R

n×p to be the matrix whose i-th row is µ′

i. Lastly, we define Σ to be the

3



covariance matrix of X, Σz to be the covariance matrix of zi, and σ2
I to be the covariance

matrix of µi.
To understand why this situation is problematic, consider the sample covariance matrix

1

n
X ′X = 1

n
B′Z ′ZB + 1

n
M ′M

p→ Σ = B′ΣzB + σ2
I.

Now note that Σz has rank p, and B′ΣzB is positive semidefinite and so can be diagonalized.
Specifically, we can write

Σ = B′ΣzB + σ2
I

= Udiag(s1, . . . , sd, 0, . . . , 0)U
′ + σ2

I

= Udiag(s1 + σ2, . . . , sd + σ2, σ2, . . . , σ2)U ′.

This is a problem for two reasons. First, the small σ2 looks like signal, but it is actually
noise. Second, the small σ2 distorts our signal (though we cannot fix this issue without
specifically considering errors-in-variables estimators).

The ridge regression estimate tries to shrink the σ2 noise terms towards zero, while
impacting the signal terms si less (i.e., proportional shrinkage). And so ridge regression
can be interpreted in this geometrical context as trying to estimate the linear coefficients
subject to a model in which the measured variables xi as actually linear functions of a lower
dimensional variable zi that is not measured.

4 Exterior Derivative Estimator

Consider the collinearity model described above, and suppose that instead we only shrink
the values that we believe are noise sd+1, . . . , sp. Then we can define another estimator as

β̂ = V
[

diag
(

1

s1
, . . . , 1

sd
, sd+1

s2
d+1

+λ
, . . . , sp

s2p+λ

)

0
]

U ′Y.

This estimator provides a different bias-variance tradeoff. It turns out that we can define
this as the following M-estimator

β̂ = argmin
β

‖Y −Xβ‖22 + λ‖Πβ‖22,

where Π is a projection matrix that projects onto the (p − d) smallest eigenvectors of the
sample covariance matrix 1

n
X ′X. We call this the exterior derivative estimator (EDE).

The name for this estimator is inspired by the following question: If we estimate the β
coefficients in our model, then what is their interpretation? This question looks simple, but
it is more complex than it seems at first glance. The coefficients β cannot be interpreted
as a gradient because the xi do not span the whole space. It turns out that the correct
interpretation of the β in this model is that of an exterior derivative, which is an extension
of gradients to differentiable manifolds. The intuition is that the β only gives derivative
information in the directions of the manifold, but we do not get derivative information in
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other directions. This is important because if we interpret, say ridge regression, in a geomet-
ric context then it means that we have only been able to estimate derivative information in
some “measured” directions. The EDE estimate makes this intuition clear because we are
penalizing for deviations of our estimate from the “measured” directions.

4.1 Principal Component Regression

There is another regression method known as principal component regression (PCR) in which
the estimate is

β̂ = V
[

diag
(

1

s1
, . . . , 1

sd
, 0, . . . , 0

)

0
]

U ′Y.

The normal way for writing this estimate is as a change of coordinates that converts xi into
some scaled variables in a lower dimension z̃i, builds a linear model with inputs z̃i and output
yi, and then performs the inverse coordinate change to get the linear model in the xi space.
We can also interpret PCR as a special case of the EDE. This can be seen by defining the
PCR estimate as

β̂ = argmin
β

lim
λ→∞

‖Y −Xβ‖22 + λ‖Πβ‖22
= lim

λ→∞

argmin
β

‖Y −Xβ‖22 + λ‖Πβ‖22.

Note that swapping the limit and minimization is not allowed in every situation, but it is
allowed in this situation. The reasons for this are technical and will be discussed later in the
course.
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