
IEOR 265 – Lecture 2

Local Linear Regression

1 Local Linear Regression

As seen in the previous lecture, a geometric perspective to regression problems can be quite
valuable. Consider a regression model

y = f(x) + ϵ

in which f(·) is known to be highly nonlinear but of unknown structure. A nonparametric
approach is natural, and one nonparametric method is known as local linear regression (LLR).
The idea of this method is that if f(·) has sufficient smoothness (say twice-differentiable),
then the model will look linear in small regions of input-space. Suppose that we consider
points in input space nearby x0, then intuitively our model looks like

y = β0[x0] +

p∑
j=1

βj[x0] · (xj − xj
0) + ϵ

for x near x0 (e.g., ∥x − x0∥ ≤ h for some small h > 0). The square brackets [x0] are used
to represent the fact that the value of β will vary for different values of x0.

The idea of a neighborhood of radius h is central to LLR. It is customary in statistics
to call this h the bandwidth. In this method, we select points within a radius of h from
x0. Furthermore, we can weight the points accordingly so that points closer to x0 are given
more weight than those points further from x0. To do this, we define a kernel function
K(u) : R → R which has the properties

1. Finite Support – K(u) = 0 for |u| ≥ 1;

2. Even Symmetry – K(u) = K(−u);

3. Positive Values – K(u) > 0 for |u| < 1.

A canonical example is the Epanechnikov kernel

K(u) =

{
3
4
(1− u2), for |u| < 1

0, otherwise

It turns out that the particular shape of the kernel function is not as important as the
bandwidth h. If we choose a large h, then the local linear assumption is not accurate. On
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the other hand, if we choose a very small h, then the estimate will not be accurate because
only a few data points will be considered. It turns out that this tradeoff in the value of h is
a manifestation of the bias-variance tradeoff; however, being able to quantify this requires
understanding stochastic convergence.

Before we discuss this tradeoff in more detail, we describe the LLR. The idea is to
perform a weighted-variant of OLS by using a kernel function and a bandwidth h to provide
the weighting. The LLR estimate β̂0[x0], β̂[x0] is given by the minimizer to the following
optimization [

β̂0[x0]

β̂[x0]

]
= argmin

β0,β

n∑
i=1

K(∥xi − x0∥/h) · (yi − β0 − (xi − x0)
′β)2.

Now if we define a weighting matrix

Wh = diag (K(∥x1 − x0∥/h), . . . , K(∥xn − x0∥/h)) ,

then we can rewrite this optimization as[
β̂0[x0]

β̂[x0]

]
= argmin

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0

β

])∥∥∥∥2

2

,

where 1n is a real-valued vector of all ones and of length dimension n and X0 = X − x′
01n.

This is identical to the OLS optimization, and so we can use that answer to conclude that[
β̂0[x0]

β̂[x0]

]
= (

[
1n X0

]′
Wh

[
1n X0

]
)−1(

[
1n X0

]′
WhY ).

2 Bias-Variance Tradeoff

Consider the case of parametric regression with β ∈ R, and suppose that we would like to
analyze the expectation of the squared loss of the difference between a estimate β̂ and the
true parameter β. In particular, we have that

E
(
(β̂ − β)2

)
= E

(
(β̂ − E(β̂) + E(β̂)− β)2

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2E

(
(E(β̂)− β)(β̂ − E(β̂)

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2(E(β̂)− β)(E

(
β̂)− E(β̂))

= E
(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
.

The term E
(
(β̂−E(β̂))2

)
is clearly the variance of the estimate β̂. The other term E

(
(E(β̂)−

β)2
)
measures how far away the “best” estimate is from the true value, and it is common to

define bias(β̂) = E
(
E(β̂)− β

)
. With this notation, we have that

E
(
(β̂ − β)2

)
= (bias(β̂))2 + var(β̂).
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This equation states that the expected estimation error (as measured by the squared loss)
is equal to the bias-squared plus the variance, and in fact there is a tradeoff between these
two aspects in an estimate.

It is worth making three comments. The first is that if bias(β̂) = E
(
E(β̂) − β

)
= 0,

then the estimate β̂ is said to be unbiased. Second, this bias-variance tradeoff exists for
vector-valued parameters β ∈ Rp, for nonparametric estimates, and other models. Lastly,
the term overfit is sometimes used to refer to an model with low bias but extremely high
variance.

3 Types of Stochastic Convergence

There are several types of stochastic convergence, and they can be thought of as direct
analogs of convergence of measures. Here, we will only be concerned with two basic types of
stochastic convergence that are commonly used in the theory of regression.

3.1 Convergence in Distribution

A sequence of random variables X1, X2, . . . converges in distribution to a random variable
X if

lim
n→∞

FXn(u) = FX(u),

for every point u at which FX(u) is continuous, where FXn(u) is the distribution function
for Xn and FX(u) is the distribution function for X. This type of convergence is denoted

Xn
d→ X.

3.2 Convergence in Probability

A sequence of random variables X1, X2, . . . converges in probability to a random variable X
if for all ϵ > 0,

lim
n→∞

P(|Xn −X| ≥ ϵ) = 0.

This type of convergence is denoted Xn
p→ X or as Xn −X

p→ 0. There are a few additional
notations for denoting convergence in distribution, and these are similar to big-O notation
that is used in mathematics. We define the following little-op notation

Xn = op(an) ⇔ Xn/an
p→ 0.

There is a similar big-Op notation that denotes stochastic boundedness. We say that Xn =
Op(an) if for any ϵ > 0 there finite M > 0 such that

P(|Xn/an| > M) < ϵ, ∀n.
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3.3 Relationships Between Modes of Convergence

There are several important points to note:

• Convergence in probability implies convergence in distribution.

• Convergence in distribution does not always imply convergence in probability.

• If Xn converges in distribution to a constant x0, then Xn also converges in probability
to x0.

4 Concentration About the Mean

Consider an infinite sequence of (mutually) independent and identically distributed (i.i.d.)
random variables X1, X2, . . ., and let Xn = 1

n

∑n
i=1Xi be the sample average. There are

a number of results that show that the sample average Xn is “close” to the mean of the
distribution. The intuition is that the sample average can only deviate “far” from the mean
if the random variables act in concert to pull the average in one direction, but the probability
that the random variables pull in the same direction is small because of their independence.

4.1 Weak Law of Large Numbers

If the random variables Xi have a finite first moment E|Xi| < ∞, then Xn
p→ µ where

µ = E(Xi). In words — the weak law of large numbers states that if i.i.d. random variables
have a finite first moment, then their sample average converges in probability to the mean
of the distribution. Note that we could also write this result as Xn − µ = op(1).

4.2 Central Limit Theorem

A more precise statement of the convergence of sample averages is given by the following
theorem: If the random variables Xi with mean E(Xi) = µ have a finite variance Var(Xi) =
σ2 < ∞, then √

n(Xn − µ)
d→ N (0, σ2),

where N (0, σ2) is the distribution of a Gaussian random variable with mean 0 and variance
σ2. This is a more precise statement because it describes the distribution of the sample
average when it is appropriately scaled by

√
n. This scaling is important because otherwise

Xn
d→ µ by the weak law of large numbers (and the fact that convergence in probability

implies convergence in distribution).

5 Extensions of Central Limit Theorem

There are a number of extensions of the Central Limit Theorem, and these are important
for understanding the convergence properties of regression estimators, which can be quite
complicated.
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5.1 Continuous Mapping Theorem

Suppose that g(u) is a continuous function. The continuous mapping theorem states that
convergence of a sequence of random variables {Xn} to a limiting random variable X is
preserved under continuous mappings. More specifically:

• If Xn
d→ X, then g(Xn)

d→ g(X).

• If Xn
p→ X, then g(Xn)

p→ g(X).

5.2 Slutsky’s Theorem

If Xn
d→ X and Yn

p→ y0, where y0 is a constant, then

• Xn + Yn
d→ X + y0;

• YnXn
d→ y0X;

There is a technical point to note about this theorem: Convergence of Yn to a constant
is a subtle but important feature for this result, because the theorem will not generally
hold when Yn converges to a non-constant random variable. Consider the example where
Xn ∼ N (0, 1) and Yn = Xn, then Xn+Yn = N (0, 4) which does not converge in distribution
to N (0, 1) +N (0, 1) = N (0, 2).

5.3 Delta Method

Using the Continuous Mapping Theorem and Slutsky’s Theorem, we can now state an ex-
tension of the Central Limit Theorem. Consider an infinite sequence of random variables
{Xn} that satisfies

√
n[Xn − θ]

d→ N (0, σ2),

where θ and σ2 are finite constants. If g(u) is continuously differentiable at θ and g′(θ) ̸= 0,
then √

n[g(Xn)− g(θ)]
d→ g′(θ)N (0, σ2).

This result is derived using the Lagrange form of Taylor’s Theorem, and can hence be
thought of as a Taylor polynomial expansion version of the Central Limit Theorem. There
are higher-order versions of the Delta Method that we do not discuss here. For instance, the
Second-Order Delta Method applies when g′(u) = 0 and g′′(u) ̸= 0.
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