
IEOR 265 – Lecture 18

Epi-Convergence

1 Sequence of Optimization Problems

Suppose we have an optimization problem

min f(x),

where f : Rp → R is lsc, level-bounded, and proper. In many applications, we may not be
interested in directly solving this optimization problem. Instead, we will have a sequence
of optimization problems that are meant to approximate this problem, and we instead solve
these approximating optimization problems. This setting is not as abstract as it may seem
at first glance: For example, this is implicitly what is done when using log-barrier func-
tions, which are common in interior-point methods for numerically solving constrained op-
timization problems by converting a constrained problem into a sequence of approximating
unconstrained problems. We will refer to this sequence of optimization problems as

min fn(x).

The central question with such sequences of approximating optimization problems is whether
they provide a good approximation to the solution of the original optimization problem. That
is, ideally we would like for Vn → V , where

Vn = min fn(x)

V = min f(x),

and we would also like for lim supn X ∗
n ⊆ X ∗ where

X ∗
n = argmin fn(x)

X ∗ = argmin f(x).

This last statement means that if x is any point such that there exists a subsequence x∗
ν ∈ X ∗

ν

such that x∗
ν → x, then x ∈ X ∗. The reason for this condition is that it may be the case that

the limiting optimization problem has more minimizers than each individual optimization
in the sequence. Note that when there is only a single minimizer, we must have that x∗

n → x∗.
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At its surface, this might seem like an easy exercise; however, certain pathologies can occur,
as evidenced by the following example: Consider a sequence of optimization problems

min min{1− x, 1, 2n|x+ 1/n| − 1}
s.t. x ∈ [−1, 1].

The objectives fn(x) = min{1−x, 1, 2n|x+1/n|− 1} converge pointwise to f(x) = min{1−
x, 1} (recall that the definition of pointwise convergence is that limn→∞ fn(x) = f(x) for
all x ∈ domf). Next we turn our attention to the minimizers of the sequence, which are
x∗
n = −1/n and converge to zero. However, the minimizer of the optimization problem that

we are approximating by the sequence is x∗ = 1. The minimizers of the sequence do not
converge to the minimizer of the limiting optimization problem.

Convergence of local minimizers to the local minimizers of a limiting optimization problem is
more difficult because additional pathologies can occur. For instance, it is possible for local
minimizers of a sequence of approximating problems to converge to the global maximizer
of the limiting problem. Proving such pathologies does not occur requires the use of more
sophisticated arguments, such as those using optimality functions.

2 Epi-convergence

It turns out that the right notion of convergence is epi-convergence, and the idea is that
the epigraphs of the fn converge to the epigraph of f (where convergence is defined in a
particular way). One simpler characterization is that we say the fn epi-converge to f (or
fn

e→ f) if and only if at each point x one has{
lim infn fn(xn) ≥ f(x), for every sequence xn → x,

lim supn fn(xn) ≤ f(x), for some sequence xn → x.

The reason this definition is useful is that there is a theorem which applies to the situation
when the domain of fn are eventually bounded, fn

e→ f , fn, f are lsc and proper. Under
these conditions, we have that:

• Vn → V where V is finite;

• the sets argmin fn are nonempty and form a bounded sequence with

lim supn X ∗
n ⊆ X ∗.

3 Epi-convergence of Oracle in LBMPC

The reason these concepts are relevant to LBMPC is that the oracle On is changing. Con-
sequently, we are not solving a fixed optimization; rather, we are solving a sequence of

2



optimization problems. And it is natural to ask the question that if the oracle converges to
the true model, then does the solution given by LBMPC converge to a solution that would
be given if the optimization problem a priori knew the true model. This situation is more
complicated than above, because we can have randomness in how we construct the oracle. As
a result, the formal results require stochastic generalizations of the epi-convergence concepts
discussed above.

In particular, suppose that there is a true model

xn+1 = Axn +Bun + g(xn, un),

where g(xn, un) ∈ W . There are results for two important cases, corresponding to two classes
of oracles.

• Parametric Oracle: If there exists λ0 such that g(x, u) = χ(x, u, λ0), then under some
technical conditions we have that the control law of LBMPC with the parametric oracle
On = χ(x, u, λ̂) converges in probability to the control law of MPC that knows the
true model.

• Nonparametric Oracle: If the nonparametric oracle converges uniformly in probability
to the true modeling error

sup
X×U

∥On(x, u)− g(x, u)∥ = Op(rn),

with rn → 0, then under some technical conditions the control law of LBMPC converges
in probability to the control law of MPC that knows the true model.

4 Further Details

More details about the theory of epi-convergence can be found in the book Variational
Analysis by Rockafellar and Wets, from which the material in the first two sections is found.
Another useful reference is the book Optimization: Algorithms and Consistent Approxima-
tions by Polak.
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