
IEOR 265 – Lecture 1

Ordinary Least Squares

1 Regression

Suppose we have a system in which an input x ∈ Rk gives an output y ∈ R, and suppose
there is a static relationship between x and y that is given by y = f(x) + ϵ, where ϵ is zero
mean noise with finite variance (i.e., E(ϵ) = 0 and var(ϵ) = σ2 < ∞). We will also assume
that ϵ is independent of x; otherwise our model has what is known as endogeneity, which is
a common topic of study in econometrics.

The process of modeling involves using measured data to identify the relationship between
x and y, meaning identify E[y|x] = f(x). This is a huge topic of inquiry, but in this course
we will categorize this regression problem into three classes:

1. Parametric Regression – The unknown function f(x) is characterized by a finite number
of parameters. It is common to think of f(x; β), where β ∈ Rp is a vector of unknown
parameters. The simplest example is a linear model, in which we have

f(x; β) =

p∑
j=1

βjx
j.

This approach is used when there is strong a priori knowledge about the structure of
the system (e.g., physics, biology, etc.).

2. Nonparametric Regression – The unknown function f(x) is characterized by an infinite
number of parameters. For instance, we might want to represent f(x) as an infinite
polynomial expansion

f(x) = β0 + β1x+ β2x
2 + . . . .

This approach is used when there is little a priori knowledge about the structure of
the system. Though it might seem that this approach is superior because it is more
flexible than parametric regression, it turns out that one must pay a statistical penalty
because of the need to estimate a greater number of parameters.

3. Semiparametric Regression – The unknown function f(x) is characterized by a com-
ponent with a finite number of parameters and another component with an infinite
number of parameters. In some cases, the infinite number of parameters are known as
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nuisance parameters; however, in other cases this infinite component might have useful
information in and of itself. A classic example is a partially linear model:

f(x) =
m∑
j=1

βjx
j + g(xm+1, . . . , xk).

Here, the g(xm+1, . . . , xk) is represented non-parametrically, and the
∑m

j=1 βjx
j term

is the parametric component.

This categorization is quite crude because in some problems the classes can blend into each
other. For instance, high-dimensional parametric regression can be thought of as nonpara-
metric regression. The key problem in regression is that of regularization. The idea of
regularization is to improve the statistical properties of estimates by imposing additional
structure onto the model.

2 Ordinary Least Squares

Suppose that we have pairs of independent measurements (xi, yi) for i = 1, . . . , n, where
xi ∈ Rp and yi ∈ R, and that the system is described by a linear model

yi =

p∑
j=1

βjx
j
i + ϵi = x′

iβ + ϵi.

Ordinary least squares (OLS) is a method to estimate the unknown parameters β ∈ Rp

given our n measurements. Because the yi are noisy measurements (whereas the xi are not
noisy in this model), the intuitive idea is to choose an estimate β̂ ∈ Rp which minimizes the
difference between the measured yi and the estimated ŷi = x′

iβ̂.

There are a number of ways that we could characterize this difference. For mathematical
and computational reasons, a popular choice is the squared loss : This difference is quantified
as

∑
i(yi − ŷi)

2, and the resulting problem of choosing β̂ to minimize this difference can be
cast as the following (unconstrained) optimization problem:

β̂ = argmin
β

n∑
i=1

(yi − x′
iβ)

2.

For notational convenience, we will define a matrix X ∈ Rn×p and a vector Y ∈ Rn such
that the i-th row of X is x′

i and the i-th row of Y is yi. With this notation, the OLS problem
can be written as

β̂ = argmin
β

∥Y −Xβ∥22,
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where ∥ · ∥2 is the usual L2-norm. (Recall that for a vector v ∈ Rk the L2-norm is
∥v∥2 =

√
(v1)2 + . . .+ (vk)2.)

Now given this notation, we can solve the above defined optimization problem. Because
the problem is unconstrained, setting the gradient of the objective to zero and solving the
resulting algebraic equation will give the solution. For notational convenience, we will use the
function J(X, Y ; β) to refer to the objective of the above optimization problem. Computing
its gradient gives

∇βJ = 2X ′(Y −Xβ̂) = 0 ⇒ X ′Xβ̂ = X ′Y

⇒ β̂ = (X ′X)−1(X ′Y ).

This is the OLS estimate of β for the linear model. In some cases, the solution is written as
β̂ = ( 1

n
X ′X)−1( 1

n
X ′Y ). The reason for this will be discussed in future lectures.

3 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

β̂ = argmin
β

∥Y −Xβ∥22,

where the variables are as defined before. The basic tension in the problem above is that in
general no exact solution exists to the linear equation

Y = Xβ;

otherwise we could use linear algebra to compute β, and this value would be a minimizer to
the optimization problem written above.

Though no exact solution exists to Y = Xβ, an interesting question to ask is whether
there is some related linear equation for which an exact solution exists. Because the noise
is in Y and not X, we can imagine that we would like to pick some Ŷ such that Ŷ = Xβ̂
has an exact solution. Recall from linear algebra, that this is equivalent to asking that
Ŷ ∈ R(X) (i.e., Ŷ is in the range space of X). Now if we think of Ŷ as true signal, then we
can decompose Y as

Y = Ŷ +∆Y,

where ∆Y represents orthogonal noise. Because – from Fredholm’s theorem in linear algebra
– we know that the range space of X is orthogonal to the null space of X ′ (i.e., R(X) ⊥
N (X ′)), it must be the case that ∆Y ∈ N (X ′) since we defined Ŷ such that Ŷ ∈ R(X). As
a result, premultiplying Y = Ŷ +∆Y by X ′ gives

X ′Y = X ′Ŷ +X ′∆Y = X ′Ŷ .

The intuition is that premultiplying by X ′ removes the noise component. And because
Ŷ ∈ R(X) and Ŷ = Xβ̂, we must have that

X ′Y = X ′Ŷ = X ′Xβ̂.

Solving this gives β̂ = (X ′X)−1(X ′Y ), which is our regular equation for the OLS estimate.
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