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ExTENSIONS OF LLASsO

1 Dual of Penalized Regression

Consider the following M-estimator
B = argmin{||Y — X513 : 6(8) <1},

where ¢ : R? — R s a penalty function with the properties that it is convex, continuous, ¢(0) = 0,
and ¢(u) > 0 for u # 0. It turns out that there exists A such that the minimizer to the above
optimization is identical to the minimizer of the following optimization

g = argmin [|Y" — XB3 4+ Ao(B).

To show this, consider the first optimization problem for ¢ > 0. Slater’s condition holds, and
so the Langrange dual problem has zero optimality gap. This dual problem is given by

maxmin |[¥ = X85 + v(6(8) — 1)
= max{||Y — X3"||2 + vo(B”) — vt : v > 0}.
Let the optimizer be v* and define A = v*, then 3 is identical to 3.
'This result is useful because it has a graphical interpretation that provides additional insight.
Visualizing the constrained form of the estimator provides intuition into why the L2-norm does
not lead to sparsity, whereas the L1-norm does.

2 Variants of Lasso

There are numerous variants and extensions of Lasso regression. The key idea is that because Lasso
is defined as an M-estimator, it can be combined with other ideas and variants of M-estimators.
Some examples are given below:



2.1 Group Lasso

Recall the group sparsity model: Suppose we partition the coefficients into blocks ' = [V ... 5™] B

where the blocks are given by:

BY =B ... By
52/ = [5k+1 5%}

Bml = [ﬂ(m—l)k—&—l S ﬁmk} .

Then the idea of group sparsity is that most blocks of coefficients are zero.
We can define the following M-estimator to achieve group sparsity in our resulting estimate:

§ = argmin|[Y = X3+ A 157]
j=1

However, this estimator will not achieve sparsity within individual blocks 37. As a result, we define
the sparse group lasso as

B = axgmin | = X813+ A3 18l + 1.

J=1

2.2 COLLINEARITY AND SPARSITY

In some models, one might have both collinearity and sparsity. One approach to this situation is
the elastic net, which is

8= argmin [[¥" — XBII5 + M BI5 + wll Bl
An alternative approach might be the Lasso Exterior Derivative Estimator (LEDE) estimator

B = argmin |[Y = XBII3 + MTIBII3 + 1B,

where II is a projection matrix that projects onto the (p — d) smallest eigenvectors of the sample
covariance matrix ~X'X.

A further generalization of this idea is when there is manifold structure and sparsity: The
Nonparametric Lasso Exterior Derivative Estimator (NLEDE) estimator is

] =g e (- xa 3]

where Xy = X — (1, I is a projection matrix that projects onto the (p — d) smallest eigenvectors
of the sample local covariance matrix —i X(W, X, and

Wi, = diag (K([lzy — wol[/R), .-, K([lzn — oll/h)) -
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3 High-Dimensional Convergence

One important feature of Lasso regression is consistency in the high-dimensional setting. Assume
that X is column-normalized, meaning that

X.
“L<1Vi=1,...,p

vn

We have two results regarding sparse models.

1. If some technical conditions hold for the s-sparse model, then with probability at least 1 —
c1 exp(—cz log p) we have for the s-sparse model that

A lo
18— Bl < ea/5y/ 2L,

where ¢y, 2, c3 are positive constants.

2. If some technical conditions hold for the approximately-s,-sparse model (recall that ¢ €

[0,1]) and /3 belongs to a ball of radius s, such that \/s_q(lo%p)lﬂ_‘”4 < 1, then with proba-
bility at least 1 — ¢1 exp(—cz log p) we have for the approximately-s,-sparse model that

logp> 1/2—q/4

n

HB—Mb§%¢§<

where ¢y, ¢2, c3 are positive constants.

Compare this to the classical (fixed p) setting in which the convergence rate is O,(1/p/n).



	Dual of Penalized Regression
	Variants of Lasso
	Group Lasso
	Collinearity and Sparsity

	High-Dimensional Convergence

