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1 Dual of Penalized Regression

Consider the following M-estimator

β̂ = argmin
β

{∥Y −Xβ∥22 : ϕ(β) ≤ t},

where ϕ : Rp → R is a penalty function with the properties that it is convex, continuous, ϕ(0) = 0,
and ϕ(u) > 0 for u ̸= 0. It turns out that there exists λ such that the minimizer to the above
optimization is identical to the minimizer of the following optimization

β̂λ = argmin
β

∥Y −Xβ∥22 + λϕ(β).

To show this, consider the first optimization problem for t > 0. Slater’s condition holds, and
so the Langrange dual problem has zero optimality gap. is dual problem is given by

max
ν≥0

min
β

∥Y −Xβ∥22 + ν(ϕ(β)− t)

⇒max
ν

{∥Y −Xβ̂ν∥22 + νϕ(β̂ν)− νt : ν ≥ 0}.

Let the optimizer be ν∗ and define λ = ν∗, then β̂λ is identical to β̂.
is result is useful because it has a graphical interpretation that provides additional insight.

Visualizing the constrained form of the estimator provides intuition into why the L2-norm does
not lead to sparsity, whereas the L1-norm does.

2 Variants of Lasso

ere are numerous variants and extensions of Lasso regression. e key idea is that because Lasso
is defined as an M-estimator, it can be combined with other ideas and variants of M-estimators.
Some examples are given below:
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2.1 G L

Recall the group sparsitymodel: Suppose we partition the coefficients into blocks β′ =
[
β1′ . . . βm′]′,

where the blocks are given by:

β1′ =
[
β1 . . . βk

]
β2′ =

[
βk+1 . . . β2k

]
...
βm′

=
[
β(m−1)k+1 . . . βmk

]
.

en the idea of group sparsity is that most blocks of coefficients are zero.
We can define the following M-estimator to achieve group sparsity in our resulting estimate:

β̂ = argmin
β

∥Y −Xβ∥22 + λ
m∑
j=1

∥βj∥2.

However, this estimator will not achieve sparsity within individual blocks βj . As a result, we define
the sparse group lasso as

β̂ = argmin
β

∥Y −Xβ∥22 + λ
m∑
j=1

∥βj∥2 + µ∥β∥1.

2.2 C  S

In some models, one might have both collinearity and sparsity. One approach to this situation is
the elastic net, which is

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥22 + µ∥β∥1.

An alternative approach might be the Lasso Exterior Derivative Estimator (LEDE) estimator

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥Πβ∥22 + µ∥β∥1,

where Π is a projection matrix that projects onto the (p − d) smallest eigenvectors of the sample
covariance matrix 1

n
X ′X .

A further generalization of this idea is when there is manifold structure and sparsity: e
Nonparametric Lasso Exterior Derivative Estimator (NLEDE) estimator is[

β̂0[x0]

β̂[x0]

]
= argmin

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0

β

])∥∥∥∥2

2

+ λ∥Πβ∥22 + µ∥β∥1,

whereX0 = X−x′
01n, Π is a projection matrix that projects onto the (p−d) smallest eigenvectors

of the sample local covariance matrix 1
nhd+2X

′
0WhX0, and

Wh = diag (K(∥x1 − x0∥/h), . . . , K(∥xn − x0∥/h)) .
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3 High-Dimensional Convergence

One important feature of Lasso regression is consistency in the high-dimensional setting. Assume
that Xj is column-normalized, meaning that

Xj√
n
≤ 1, ∀j = 1, . . . , p.

We have two results regarding sparse models.

1. If some technical conditions hold for the s-sparse model, then with probability at least 1 −
c1 exp(−c2 log p) we have for the s-sparse model that

∥β̂ − β∥2 ≤ c3
√
s

√
log p
n

,

where c1, c2, c3 are positive constants.

2. If some technical conditions hold for the approximately-sq-sparse model (recall that q ∈
[0, 1]) and β belongs to a ball of radius sq such that √sq(

log p
n
)1/2−q/4 ≤ 1, then with proba-

bility at least 1− c1 exp(−c2 log p) we have for the approximately-sq-sparse model that

∥β̂ − β∥2 ≤ c3
√
sq

(
log p
n

)1/2−q/4

,

where c1, c2, c3 are positive constants.

Compare this to the classical (fixed p) setting in which the convergence rate is Op(
√
p/n).
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