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1 Maximum Likelihood Estimators

A maximum likelihood estimator (MLE) is a method for parametric estimation that defines the
estimate to be the set of parameters that is “most likely” given the data observed. is statement
can be made more precise. If we define f(xi, yi; β) to be the probability density function (pdf ),
then the MLE estimate is given by

β̂ = argmax
β

n∏
i=1

f(xi, yi; β),

since the likelihood for observing (xi, yi) that are i.i.d. is given by
∏

i f(xi, yi; β). (Recall that the
pdf for iid random variables is the product of the individual pdf ’s.) Because the exponential family
of distributions is so ubiquitous, it is common to define the MLE estimate by taking the logarithm
of the above objective function. e MLE estimate defined using the log-likelihood is

β̂ = argmax
β

n∑
i=1

log f(xi, yi; β).

1.1 E: P P  N D

It is interesting to consider a few examples of MLE estimators. Suppose that xi ∼ N (µ, σ2) where
µ and σ2 are unknown. en the MLE estimator for µ and σ2 are given by

µ̂, σ̂2 = argmax
µ,σ2

n∑
i=1

(
− (xi − µ)2/(2σ2)− 1

2
log σ2 − 1

2
log(2π)

)
,

since the normal pdf is f(xi) =
1

σ
√
2π

exp(−(xi − µ)2/(2σ2)). Setting the gradient equal to zero:

n∑
i=1

2(xi − µ̂)/(2σ̂2) = 0

n∑
i=1

(
(xi − µ̂)2/(2(σ̂2)2)− 1/(2σ̂2)

)
= 0.
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e first equation of the gradient can be manipulated as follows:
n∑

i=1

2(xi − µ̂)/(2σ2) = 0 ⇒
n∑

i=1

(
xi

)
− nµ̂ = 0

⇒ µ̂ =
1

n

n∑
i=1

xi.

is is just the normal sample average. Next we manipulate the second equation of the gradient:
n∑

i=1

(
(xi − µ̂)2/(2(σ̂2)2)− 1/(2σ̂2)

)
= 0 ⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2.

Interestingly, this estimate is biased but consistent.

1.2 E: L F  N D

As another example, suppose that xi ∼ N (0,Σ) and yi = x′
iβ + ϵi where ϵi ∼ N (0, σ2) with

unknown σ2. e MLE estimate of β is given by

β̂ = argmax
β

n∑
i=1

(
− (yi − x′

iβ)
2/(2σ2)− 1

2
log σ2 − 1

2
log(2π)

)
.

Simplifying this, we have that

β̂ = argmax
β

n∑
i=1

−(yi − x′
iβ)

2 = argmin
β

n∑
i=1

(yi − x′
iβ)

2 = argmin
β

∥Y −Xβ∥22.

is is equivalent to the OLS estimate!

2 M-Estimator

An M-estimator (the M stands for maximum likelihood-type) is an estimate that is defined as the
minimizer to an optimization problem:

β̂ = argmin
β

n∑
i=1

ρ(xi, yi; β),

where ρ is some suitably chosen function. We have already seen examples ofM-estimators. Another
example is a nonlinear least squares estimator

β̂ = argmin
β

n∑
i=1

(yi − f(xi; β))

for some parametric nonlinear model yi = f(xi; β) + ϵ. ere are in fact many different aspects of
M-estimators, including:
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• MLE estimators;

• robust estimators;

• estimates with Bayesian priors.
One of the strengths of M-estimators is that these various components can be mixed and matched.
We have already discussed MLE estimators, and so we will next discuss robust estimators and
Bayesian priors.

2.1 R E

One of the weaknesses of a squared loss function L(u) = u2 is that it can overly emphasize outliers.
As a result, other loss functions can be used. For instance the absolute loss L(u) = |u| could be
used. Because it is not differentiable at the origin, one could instead use the Huber loss function

Lδ(u) =

{
u2/2, if |u| < δ

δ(|u| − δ/2), otherwise

which is quadratic for small values and linear for large values. As a result, it is differentiable at all
values. A final example is Tukey’s biweight loss function

Lδ(u) =

{
u2/2, if |u| < δ

δ2/2, otherwise

which is quadratic for small values and constant for large values. One “weakness” of this loss func-
tion is that it is not convex, which complicates the optimization problem since finding the mini-
mizer is more difficult for non-convex optimization problems.

2.2 B P

Consider the problem of regression for a linear model yi = x′
iβ + ϵi, and suppose that the errors ϵi

are Gaussian with zero mean and finite variance. Now imagine that we have some Bayesian prior
density for the model parameters β. ere are two important cases:

• Suppose that the βi have a Bayesian prior given by a normal distribution with zero mean and
finite variance. en the corresponding estimate is given by

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥22.

• Suppose that the βi have a Bayesian prior given by a Laplace distribution, which has pdf

f(βi) =
λ

2
exp(−λ|βi|).

en the corresponding estimate is given by

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥1.
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