
IEOR 290A – Lecture 40
Details for Multi-Agent Utility Learning

1 Variational Inequality Feasibility Formulation

Let

X =

x
1

...
xp


and

X (u) = X 1(u)× · · · × X p,

and assume that we can parameterize the utility function of the k-th agent by ϕ(X, u; βk)
with a gradient that is affine in βk for every fixed value of (X, u). Assuming that the
parameterization is differentiable, define

D(X, u; β) =

−∇x1ϕ(X, u; β1)
...

−∇xpϕ(X, u; βp)

 ,

and recall that the feasibility formulation of estimating parameters in the agents’ utilities is
given by:

β̂ = arg min
β

0

s.t. F k′yki ≤ −∇xkϕ(X∗
i , ui; βk), ∀k = 1, . . . , p

D(X∗
i , ui; β)

′X∗
i −

p∑
k=1

(hk −Gkui)
′yki ≤ 0

β ∈ Γ.

2 Examples

This might seem like a restrictive formulation (in particular the requirement that the gradient
is affine in β), but it can capture many useful situations. The same examples of utilities
discussed for the case of a single utility maximizing agent are equally applicable in this case.
Instead, here we will focus on one particular game-theoretic model of interest to engineers.
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2.1 Vehicle Traffic

We define a road network by a directed graph G = (N,L), where N = {1, . . . , n} is a set of
nodes representing junctions between roads, and

L = {(i, j,m) : the m-th road going between node i to node j}

is a set of links representing roads between junctions. Note that roads going in opposite
directions are distinct links, meaning that (i, j, ·) ̸= (j, i·), and having a road (i, j, ·) does
not guarantee having a road in the opposite direction (j, i, ·). We do not consider roads that
loop back to the original node (i, i, ·).

In this model, there are w origin-destination pairs {o1, d1}, . . . , {ow, dw}. We associate a
finite and positive rate ri for each pair {oi, di}, and this rate denotes the number of vehicles
entering and exiting, when the network is at equilibrium. The amount of flow on the link
(i, j,m) is given by f(i,j,m).

Furthermore, we define a delay function for each link D(i,j,m) : f(i,j,m) → R+. With
these definitions, it can be shown that the Nash equilibrium corresponds to a flow in which
each driver tries to minimize their own travel time. Such a flow is sometimes called a User
Equilibrium flow or a Wardrop equilibrium. This flow is given by the minimizer to the
following optimization problem:

min
∑

(i,j,m)∈L

∫ f(i,j,m)

0

D(i,j,m)(f)df

s.t. f(i,j,m) ≥ 0

ri +
∑
j,m

f(j,oi,m) =
∑
j,m

f(oi,j,m),∀{oi, di}∑
j,m

f(j,di,m) = ri +
∑
j,m

f(di,j,m),∀{oi, di}∑
j,m

f(j,k,m) =
∑
j,m

f(k,j,m),∀k ̸= oi, di,∀i

Given this model, we can ask the inverse question: Suppose we observe the flows on a
road network, can we infer the driver belief regarding the delay function of each road? It
turns out that we can use a modified version of the formulation discussed to address this
question, with the only difference being that the constraints X k(ui) do not exist; rather,
there is a single X (u) constraint since all of the decision variables enter constraints with
each other. The corresponding feasibility problem can be written, but the main question is
whether solving that problem is tractable. It turns out that the terms ∇xkϕ in the feasibility
formulation are equivalent to D(i,j,m)(f) in this vehicle traffic model.

So suppose that we have some parameterization of the vehicle traffic, say D(i,j,m)(f) =
γ(f, β(i,j,m)). Then we require that γ be affine with respect to β(i,j,m) in order for our feasibility
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problem to be convex. For example, we may try a model such as

D(i,j,m)(f) = 1 + k(i,j,m),1f + k(i,j,m),2f
2 + k(i,j,m),3f

3 + k(i,j,m),4f
4.

This parametric form is clearly affine with respect to β. It may be reasonable to try this form
because a common model in the traffic engineering community is to use D(f) = 1 + 0.15t4.

There is another subtle issue with the formulation. If we have different parameters for
each road, then we will have more unknown parameters than data points. This is a special
case of a non-identifiable model. One way to fix this model is to reduce the number of
parameters. The easiest approach is to assume that the parameters are identical for each
road. Another approach would be to assume that there are m classes of roads (highway,
two-laned, four-laned, etc.), and each class of road has a single set of parameters.

3 Suboptimal or Noisy Points

So far, we have assumed that the points (ui, X
∗
i ) are measured without noise. Suppose

instead that we measure (ui, X
∗
i + ϵi) where ϵi is some i.i.d. noise. (An alternative model is

that the measured points (ui, Xi) are suboptimal, meaning that they are close to the Nash
equilibrium.) This introduces a new problem because now our variational inequality will not
be true. To overcome this difficulty, we define the new feasibility problem:

β̂ = arg min
β

∥µ∥2

s.t. F k′yki ≤ −∇xkϕ(X∗
i , ui; βk), ∀k = 1, . . . , p

D(X∗
i , ui; β)

′X∗
i −

p∑
k=1

(hk −Gkui)
′yki ≤ µi

β ∈ Γ.

The idea is that we allow for residuals in the appropriate inequality constraints that would
be identically zero for optimal points, to take into account that a measured point may be
suboptimal.

4 Further Details

More details about these concepts can be found in the paper Data-Driven Estimation in
Equilibrium Using Inverse Optimization by Bertsimas, Gupta, and Paschalidis, from which
much of the above material is found.
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