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1 Bias and Variance of OLS

We begin by computing the expectation of the OLS estimate

E(β̂) = E((X ′X)−1X ′Y )

= E((X ′X)−1X ′(Xβ + ϵ))

= E(β + (X ′X)−1X ′ϵ)

= β + E(E[(X ′X)−1X ′ϵ|X])

= β.

As a result, we conclude that bias(β̂) = 0.
Now assume that the xi are independent and identically distributed (i.i.d.) random variables,

with mean zero E(xi) = 0 and have covariance matrix Σ that is assumed to be invertible. By the
weak law of large numbers (wlln), we have that 1

n
X ′X

p→ Σ and that 1
n
X ′Y

p→ Σβ. Using the
Continuous Mapping eorem, we have that β̂ p→ β. When an estimate converges in probability
to its true value, we say that the estimate is consistent. us, the OLS estimate is consistent under
the model we have described; however, consistency does not hold if Σ is not invertible.

We next determine the asymptotic variance of the OLS estimate. By the Central Limit e-
orem (CLT), we have that 1

n
X ′X = Σ + Op(

1√
n
) and 1

n
X ′Y = Σβ + Op(

1√
n
). Applying the

Continuous Mapping eorem gives that β̂ = β +Op(
1√
n
). Since we know that

E((β̂ − β)2) = (bias(β̂))2 + var(β̂),

we must have that var(β̂) = Op(1/n), since we showed above that bias(β̂) = 0.

2 Bias and Variance of LLR

Next, we describe the bias and variance of LLR. e heuristic derivations are more complicated,
and so we do not include them. It can be shown that the bias and variance of an LLR estimate is

bias(β̂0[x0]) = O(h2)

var(β̂0[x0]) = Op

(
1

nhd

)
,
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where h is the bandwidth and d is the dimensionality of xi (i.e., xi ∈ Rd). Note that we have
described the bias and variance for the estimate of β0 and not that of β. e bias and variance for
the estimate of β are slightly different. e interesting aspect is that these expressions show how
the choice of the bandwidth h affects bias and variance. A large bandwidth means that we have
high bias and low variance, whereas a small bandwidth means that we have a low bias but high
variance.

When implementing LLR, we need to pick the bandwidth h in some optimal sense that trades
off these competing effects. We can, at least analytically, pick the asymptotic rate of h:

h = argmin
h

(
c1h

4 + c2
1

nhd

)
⇒ c̃1h

3 + c̃2
1

nhd+1
= 0

⇒ c1h
d+4 = c2

1

n
⇒ h = O(n−1/(d+4)).

e resulting optimal rate is that

β0 = β +Op(n
−2/(d+4)).

Note that this is slower than the rate of OLS (i.e, Op(1/
√
n)) for any d ≥ 1, and is an example

of the statistical penalty that occurs when using nonparametric methods. e situation is in fact
even worse: ere is a “curse of dimensionality” that occurs, because the convergence rate gets
exponentially worse as the ambient dimension d increases. It turns out that if the model has addi-
tional structure, then one can improve upon this “curse of dimensionality” and get better rates of
convergence when using LLR; this will be discussed later in the course.

3 Cross-Validation

Cross-validation is a data-driven approach that is used to choose tuning parameters for regression.
e choice of bandwidth h is an example of a tuning parameter that needs to be chosen in order to
use LLR. e basic idea of cross-validation is to split the data into two parts. e first part of data
is used to compute different estimates (where the difference is due to different tuning parameter
values), and the second part of data is used to compute a measure of the quality of the estimate.
e tuning parameter that has the best computing measure of quality is selected, and then that
particular value for the tuning parameter is used to compute an estimate using all of the data.
Cross-validation is closely related to the jackknife and bootstrap methods, which are more general.
We will not discuss those methods here.
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3.1 L k-O C-V

We can describe this method as an algorithm.

data : (xi, yi) for i = 1, . . . , n (measurements)
input : λj for j = 1, . . . , z (tuning parameters)
input : R (repetition count)
input : k (leave-out size)
output: λ∗ (cross-validation selected tuning parameter)
for j ← 1 to z do

set ej ← 0;
end
for r ← 1 to R do

set V to be k randomly picked indices from I = {1, . . . , n};
for j ← 1 to z do

fit model using λj and (xi, yi) for i ∈ I \ V ;
compute cross-validation error ej ← ej +

∑
i∈V(yi − ŷi)

2;
end

end
set λ∗ ← λj for j := argmin ej ;

3.2 k-F C-V

We can describe this method as an algorithm.

data : (xi, yi) for i = 1, . . . , n (measurements)
input : λj for j = 1, . . . , z (tuning parameters)
input : k (block sizes)
output: λ∗ (cross-validation selected tuning parameter)
for j ← 1 to k do

set ej ← 0;
end
partition I = {1, . . . , n} into k randomly chosen subsets Vr for r = 1, . . . , k;
for r ← 1 to k do

for j ← 1 to z do
fit model using λj and (xi, yi) for i ∈ I \ Vr;
compute cross-validation error ej ← ej +

∑
i∈Vr

(yi − ŷi)
2;

end
end
set λ∗ = λj for j := argmin ej ;
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3.3 N  C-V

ere are a few important points to mention. e first point is that the cross-validation error is an
estimate of prediction error, which is defined as

E((ŷ − y)2).

One issue with cross-validation error (and this issue is shared by jackknife and bootstrap as well), is
that these estimates of prediction error must necessarily be biased lower. e intuition is that we are
trying to estimate prediction error using data we have seen, but the true prediction error involves
data we have not seen. e second point is related, and it is that the typical use of cross-validation
is heuristic in nature. In particular, the consistency of an estimate is affected by the use of cross-
validation. ere are different cross-validation algorithms, and some algorithms can “destroy” the
consistency of an estimator. Because these issues are usually ignored in practice, it is important to
remember that cross-validation is usually used in a heuristic manner. e last point is that we can
never eliminate the need for tuning parameters. Even though cross-validation allows us to pick a
λ∗ in a data-driven manner, we have introduced new tuning parameters such as k. e reason that
cross-validation is considered to be a data-driven approach to choosing tuning parameters is that
estimates are usually less sensitive to the choice of cross-validation tuning parameters, though this
is not always true.
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