IEOR 290A — Lecture 37
Estimating an Individual Utility

1 Utility Maximizing Agent

Recall the following abstract model: Suppose that an agent makes decisions by solving the
following optimization problem:

x; = argmax{J(z,u;) | © € X(u;)},

where u; € R? are inputs, o7 € R? are decisions, J(x,u;) is the utility function of the agent,
and X (u;) is a bounded set (that depends on u;). In this model, we observe (u;, x}) for
i=1,...,n and would like to infer the function J(z,u;).

To make this model more concrete, we will specify a specific instantiation of this problem.
In particular, suppose that

o The constraint set is described by linear equality and inequality constraints:
X(u) ={x: Av + Bu; < ¢, Fx + Gu; = h},
where (A,b) and (F, h) are suitably defined matrices and vectors.

« Assume that we have a parametrization of the utility function, that is we have ¢(x, u; 3)
and a bounded set T" such that there exists 5y € I' with J(x,u) = é(z,u; By).

Though these two conditions make the problem more specific, we will still impose additional
conditions on the model formulation to make the problem computationally tractable.

2 Key Technical Difficulty

Recall the feasibility problem formulation of the inverse decision-making problem for this
single utility maximizing agent model:
B = arg mﬁin 0
s.t. af € argmgx{gzﬁ(x,ui; B) | Az + Bu; < ¢, Fx + Gu; = h}
gel.

This feasibility problem is difficult to solve because it has an atypical constraint: The con-
straint that =] be the minimizer to some optimization problem cannot be directly handled
by nonlinear programming techniques. There are two reasons that this constraint presents
challenges:



1. Depending on the value of g there may be zero, one, or multiple maximizers. This
means that in general we must treat the function

P(u;, 8) = argmax{¢(z,u; 5) | Ar + Bu; < ¢, Fx + Gu; = h}

as a multi-valued function.

2. The function P(u;, 3) has a complex form, because it is defined as a set of maximizers.
This means that in general we cannot even hope for continuity of P(u;, 3) (cf. the
Berge Maximum Theorem, which says that for continuous ¢ we can only expect upper-
hemicontinuity of P(u;, 5)), much less differentiablity.

3 Tractable Formulation

Since P(u;, 5) is a multi-valued function, we can make the problem more tractable by im-
posing additional conditions on our model so that instead P(u;, 3) is a single-valued (and
hence continuous by the Berge Maximum Theorem) function. In particular, suppose that
for all fixed values of 8 € I' the function ¢(z,wu;; B) is strictly concave in (x,u;). Then the
corresponding optimization problem has a single maximizer, and so this additional condition
fixes our first difficulty.

The second difficulty regarding the complex form of P(u;, 3) still remains. However,
since our constraints are linear, we have linearity constraint qualification, and so the unique
maximizer z7 = P(u;, 3) satisfies the KKT conditions: There exist row-vectors A; and p;
such that

—Vob(x), ui; ) + A+ i F =0
Az} + Bu; <c¢
Fz; + Gu; = h
X >0
N = 0if Ajz} + Bju; < ¢,

where A, B, c; denote the j-th row of A, B, c respectively. As a result, we can now pose
our feasibility problem as

~

b = arg mﬁin 0
st. — Veo(z!,ui; f) + A+ i FF =0
X >0
)\Z =0if AJZL‘: + Bjui < Cj
pgel.

*

Note that because (u;, x}) are measured, they are constant in our feasibility formulation
and in the KKT conditions. Therefore, the conditional statement “if A;z; + Bju; < ¢;”

2



is computed before we solve the feasibility problem. In other words, we decide to either
include or exclude the constraint A} = 0 in our feasibility problem based on a precomputed
conditional.

This problem can still be difficult to solve, because this reformulated problem may not
be convex. Consider the constraint

and note that it is an equality constraint. However, a standard result is that an equality
constraint Q(/3) is convex if and only @ is an affine function (meaning that it can be written
as Q = M+ k where M is a matrix and k is a constant vector). As a result, our feasibility
problem to estimate the parameters /3 of our utility function is convex if and only if Q(5) =
—V.é(xf, u;; B) is an affine function. Stated in another way, our formulation is convex if
and only if the gradient of ¢ with respect to z is affine in § when the gradient is evaluated
at xf and wu;.



	Utility Maximizing Agent
	Key Technical Difficulty
	Tractable Formulation

