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1 Types of Stochastic Convergence

ere are several types of stochastic convergence, and they can be thought of as direct analogs
of convergence of measures. Here, we will only be concerned with two basic types of stochastic
convergence that are commonly used in the theory of regression.

1.1 C  D

A sequence of random variables X1, X2, . . . converges in distribution to a random variable X if
lim
n→∞

FXn(u) = FX(u),

for every point u at which FX(u) is continuous, where FXn(u) is the distribution function for Xn

and FX(u) is the distribution function for X . is type of convergence is denoted Xn
d→ X .

1.2 C  P

A sequence of random variables X1, X2, . . . converges in probability to a random variable X if for
all ϵ > 0,

lim
n→∞

P(|Xn −X| ≥ ϵ) = 0.

is type of convergence is denoted Xn
p→ X or as Xn − X

p→ 0. ere are a few additional
notations for denoting convergence in distribution, and these are similar to big-O notation that is
used in mathematics. We define the following little-op notation

Xn = op(an) ⇔ Xn/an
p→ 0.

ere is a similar big-Op notation that denotes stochastic boundedness. We say thatXn = Op(an)
if for any ϵ > 0 there finite M > 0 such that

P(|Xn/an| > M) < ϵ, ∀n.

1.3 R B M  C

ere are several important points to note:
• Convergence in probability implies convergence in distribution.

• Convergence in distribution does not always imply convergence in probability.

• IfXn converges in distribution to a constant x0, thenXn also converges in probability to x0.
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2 Concentration About the Mean

Consider an infinite sequence of (mutually) independent and identically distributed (i.i.d.) random
variablesX1, X2, . . ., and letXn = 1

n

∑n
i=1Xi be the sample average. ere are a number of results

that show that the sample average Xn is “close” to the mean of the distribution. e intuition is
that the sample average can only deviate “far” from the mean if the random variables act in concert
to pull the average in one direction, but the probability that the random variables pull in the same
direction is small because of their independence.

2.1 W L  L N

If the random variablesXi have a finite first moment E|Xi| < ∞, thenXn
p→ µ where µ = E(Xi).

In words — the weak law of large numbers states that if i.i.d. random variables have a finite first
moment, then their sample average converges in probability to the mean of the distribution. Note
that we could also write this result as Xn − µ = op(1).

2.2 C L T

A more precise statement of the convergence of sample averages is given by the following theorem:
If the random variables Xi with mean E(Xi) = µ have a finite variance Var(Xi) = σ2 < ∞, then

√
n(Xn − µ)

d→ N (0, σ2),

where N (0, σ2) is the distribution of a Gaussian random variable with mean 0 and variance σ2.
is is a more precise statement because it describes the distribution of the sample average when it
is appropriately scaled by

√
n. is scaling is important because otherwiseXn

d→ µ by the weak law
of large numbers (and the fact that convergence in probability implies convergence in distribution).

3 Extensions of Central Limit eorem

ere are a number of extensions of the Central Limit eorem, and these are important for un-
derstanding the convergence properties of regression estimators, which can be quite complicated.

3.1 C M T

Suppose that g(u) is a continuous function. e continuous mapping theorem states that conver-
gence of a sequence of random variables {Xn} to a limiting random variable X is preserved under
continuous mappings. More specifically:

• If Xn
d→ X , then g(Xn)

d→ g(X).

• If Xn
p→ X , then g(Xn)

p→ g(X).

2



3.2 S’ T

If Xn
d→ X and Yn

p→ y0, where y0 is a constant, then

• Xn + Yn
d→ X + y0;

• YnXn
d→ y0X ;

ere is a technical point to note about this theorem: Convergence of Yn to a constant is a subtle but
important feature for this result, because the theorem will not generally hold when Yn converges to
a non-constant random variable. Consider the example where Xn ∼ N (0, 1) and Yn = Xn, then
Xn + Yn = N (0, 4) which does not converge in distribution to N (0, 1) +N (0, 1) = N (0, 2).

3.3 D M

Using the Continuous Mappingeorem and Slutsky’s eorem, we can now state an extension of
the Central Limit eorem. Consider an infinite sequence of random variables {Xn} that satisfies

√
n[Xn − θ]

d→ N (0, σ2),

where θ and σ2 are finite constants. If g(u) is continuously differentiable at θ and g′(θ) ̸= 0, then
√
n[g(Xn)− g(θ)]

d→ g′(θ)N (0, σ2).

is result is derived using the Lagrange form of Taylor’s eorem, and can hence be thought of
as a Taylor polynomial expansion version of the Central Limit eorem. ere are higher-order
versions of the Delta Method that we do not discuss here. For instance, the Second-Order Delta
Method applies when g′(u) = 0 and g′′(u) ̸= 0.
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