IEOR 290A – Lecture 26 Selected Variational Analysis

1 Extended-Real-Valued Functions

A common formulation of a finite-dimensional optimization problem is

min
$$f(x)$$

s.t. $g_i(x) \le 0, \forall i = 1, \dots, I_1$
 $h_i(x) = 0, \forall i = 1, \dots, I_2$
 $x \in \mathcal{X} \subseteq \mathbb{R}^p$

where $f(x), g_i(x), h_i(x)$ are functions that have a domain that is a subset of \mathbb{R}^p , and f(x) is a function with domain in \mathbb{R} . It turns out that for certain applications, it can be useful to redefine this optimization using extended-real-valued functions.

The extended-real-valued line is defined as $\mathbb{R} = [-\infty, \infty]$ (compare this to the real-valued line $\mathbb{R} = (-\infty, \infty)$). The difference between these two lines is that extended-real-valued line specifically includes the values $-\infty$ and ∞ , whereas these are not numbers in the real-valued line.

The reason that this concept is useful is that it can be used to reformulate the above optimization problem. In particular, suppose that we define an extended-real-valued function \tilde{f} as follows

$$\tilde{f}(x) = \begin{cases} f(x), & \text{if } g_i(x) \le 0, \forall i = 1, \dots, I_1; h_i(x) = 0, \forall i = 1, \dots, I_2; x \in \mathcal{X} \subseteq \mathbb{R}^p \\ \infty, & \text{otherwise} \end{cases}$$

We can hence formulate the above optimization problem as the following unconstrained optimization

 $\min \tilde{f}(x).$

It is worth emphasizing this point: One benefit of formulating optimization problems using extended-real-valued functions is that it allows us to place the constraints and objective on equal footing.

2 Epigraph

An important concept in variational analysis is that of the epigraph. In particular, suppose we have an optimization problem

 $\min f(x),$

where $f: \mathbb{R}^p \to \overline{\mathbb{R}}$ is an extended-real-valued function. We define the *epigraph* of f to be the set

epi
$$f = \{(x, \alpha) \in \mathbb{R}^p \times \mathbb{R} \mid \alpha \ge f(x)\}.$$

Note that the epigraph of f is a subset of $\mathbb{R}^p \times \mathbb{R}$ (which does not include the extended-real-valued line).

3 Lower Semicontinuity

We define the *lower limit* of a function $f : \mathbb{R}^p \to \overline{\mathbb{R}}$ at \overline{x} to be the value in $\overline{\mathbb{R}}$ defined by

$$\liminf_{x \to \overline{x}} f(x) = \lim_{\delta \searrow 0} \left[\inf_{x \in \mathcal{B}(\overline{x}, \delta)} f(x) \right] = \sup_{\delta > 0} \left[\inf_{x \in \mathcal{B}(\overline{x}, \delta)} f(x) \right],$$

where $\mathcal{B}(\overline{x}, \delta)$ is a ball centered at \overline{x} with radius δ . Similarly, we define the *upper limit* of f at \overline{x} as

$$\limsup_{x \to \overline{x}} f(x) = \lim_{\delta \searrow 0} \left[\sup_{x \in \mathcal{B}(\overline{x}, \delta)} f(x) \right] = \inf_{\delta > 0} \left[\sup_{x \in \mathcal{B}(\overline{x}, \delta)} f(x) \right]$$

We say that the function $f : \mathbb{R}^p \to \overline{\mathbb{R}}$ is lower semicontinuous (lsc) at \overline{x} if

$$\liminf_{x \to \overline{x}} f(x) \ge f(\overline{x}), \text{ or equivalently } \liminf_{x \to \overline{x}} f(x) = f(\overline{x}).$$

Furthermore, this function is lower semicontinuous on \mathbb{R}^p if the above condition holds for every $\overline{x} \in \mathbb{R}^p$. There are some useful characterizations of lower semicontinuity:

- the epigraph set epi f is closed in $\mathbb{R}^p \times \mathbb{R}$;
- the level sets of type $lev_{\leq a}f$ are all closed in \mathbb{R}^p .

One reason that lower semicontinuity is important is that if f is lsc, level-bounded (meaning the level sets $lev_{\leq a}f$ are bounded), and proper (meaning that the preimage of every compact set is compact), then the value $\inf f$ is finite and the set $\arg \min f$ is nonempty and compact. This means that we can replace $\inf f$ by $\min f$ in this case.

4 Further Details

More details about these concepts can be found in the book *Variational Analysis* by Rockafellar and Wets, from which the above material is found.