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1 Naming

In theoretical computer science, oracles are black boxes that take in inputs and give answers. An
important class of arguments known as relativizing proofs utilize oracles in order to prove results
in complexity theory and computability theory. ese proofs proceed by endowing the oracle with
certain generic properties and then studying the resulting consequences.

We have named the functions On oracles in reference to those in computer science. Our
reason is that we proved robustness and stability properties of LBMPC by only assuming generic
properties, such as continuity or boundedness, on the function On. ese functions are arbitrary,
which can include worst case behavior, for the purpose of the theorems in the previous section.

Whereas before, we considered the oracles as abstract objects, here we discuss and study specific
forms that the oracle can take. In particular, we can design On to be a statistical tool that identifies
better system models. is leads to two natural questions: First, what are examples of statistical
methods that can be used to construct an oracle for LBMPC? Secondly, when does the control law
of LBMPC converge to the control law of MPC that knows the true model? It will turn out that
the second question is complex, and will be discussed in a later lecture.

2 Parametric Oracles

A parametric oracle is a continuous functionOn(x, u) = χ(x, u;λn) that is parameterized by a set of
coefficients λn ∈ T ⊆ RL, where T is a set. is class of learning is often used in adaptive control.
In the most general case, the function χ is nonlinear in all its arguments, and it is customary to use
a least-squares cost function with input and trajectory data to estimate the parameters

λ̂n = argminλ∈T
∑n

j=0(Yj − χ(xj, uj;λ))
2, (1)

where Yi = xi+1−(Axi+Bui). is can be difficult to compute in real-time because it is generally
a nonlinear optimization problem.

Example: It is common in biochemical networks to have nonlinear terms in the dynamics such as
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where λn ∈ T ⊂ R5 are the unknown coefficients in this example. Such terms are often called Hill
equation type reactions.
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An important subclass of parametric oracles are those that are linear in the coefficients: On(x, u) =∑L
i=1 λn,iχi(x, u), where χi ∈ Rp for i = 1, . . . , L are a set of (possibly nonlinear) functions. e

reason for the importance of this subclass is that the least-squares procedure (1) is convex in this
situation, even when the functions χi are nonlinear. is greatly simplifies the computation re-
quired to solve the least-squares problem (1) that gives the unknown coefficients λn.

Example: One special case of linear parametric oracles is when the χi are linear functions. Here, the
oracle can be written asOm(x, u) = Fλmx+Gλmu, where Fλm , Gλm are matrices whose entries are
parameters. e intuition is that this oracle allows for corrections to the values in theA,B matrices
of the nominal model; it was used in conjunction with LBMPC on a quadrotor helicopter testbed
that will be discussed in later lectures, in which LBMPC enabled high-performance flight.

3 Nonparametric Oracles

Nonparametric regression refers to techniques that estimate a function g(x, u) of input variables
such as x, u, without making a priori assumptions about the mathematical form or structure of the
function g. is class of techniques is interesting because it allows us to integrate non-traditional
forms of adaptation and “learning” into LBMPC. And because LBMPC robustly maintains fea-
sibility and constraint satisfaction as long as Ω can be computed, we can design or choose the
nonparametric regression method without having to worry about stability properties. is is a spe-
cific instantiation of the separation between robustness and performance in LBMPC.

Example: Neural networks are a classic example of a nonparametric method that has been used
in adaptive control, and they can also be used with LBMPC. ere are many particular forms of
neural networks, and one specific type is a feedforward neural network with a hidden layer of kn
neurons; it is given by

On(x, u) = c0 +
∑kn

i=1 ciσ(a
′
i[x

′ u′]′ + bi), (3)

where ai ∈ Rp+m and bi, c0, ci ∈ R for all i ∈ {1, . . . , k} are coefficients, and σ(x) = 1/(1+e−x) :
R → [0, 1] is a sigmoid function. Note that this is considered a nonparametric method because it
does not generally converge unless kn → ∞ as n → ∞.

Designing a nonparametric oracle for LBMPC is challenging because the tool should ideally
be an estimator that is bounded to ensure robustness of LBMPC and differentiable to allow for
its use with numerical optimization algorithms. Local linear estimators are not guaranteed to be
bounded, and their extensions that remain bounded are generally non-differentiable. On the other
hand, neural networks can be designed to remain bounded and differentiable, but they can have
technical difficulties related to the estimation of its coefficients. In future lectures, we will discuss
one specific type of nonparametric oracle that works well with LBMPC both theoretically and in
simulations.

2


	Naming
	Parametric Oracles
	Linear Oracles

	Nonparametric Oracles

