
IEOR 290A – Lecture 22
(Robust) Linear Tube MPC

1 Optimization Formulation

Recall the LTI system with disturbance:

xn+1 = Axn +Bun + dn,

where dn ∈ W . The issue with using a constant state-feedback controller un = Kxn is that
the set Ω for which this controller is admissible and ensures constraint satisfaction subject
to all possible sequences of disturbances (i.e., d0, d1, . . .) can be quite small. In this sense,
using this controller is conservative, and the relevant question is whether we can design a
nonlinear controller un = ℓ(xn) for the LTI system with disturbance such that constraints
on states xn ∈ X and inputs un ∈ U are satisfied. One idea is to use an MPC framework
with robustness explicitly included.

(Robust) linear tube MPC is one approach for this. The idea underlying this approach
is to subtract out the effect of the disturbance from our state and input constraints. One
formulation is

Vn(xn) = minψn(xn, . . . , xn+N , ǔn, . . . , ǔn+N−1)

s.t. xn+1+k = Axn+k +Bǔn+k, ∀k = 0, . . . , N − 1

xn = xn

xn+k ∈ X ⊖Rk,∀k = 1, . . . , N − 1

ǔn+k = Kxn+k + ck,∀k = 0, . . . , N − 1

ǔn+k ∈ U ⊖KRk, ∀k = 0, . . . , N − 1

xn+N ∈ Ω⊖RN

where X ,U ,Ω are polytopes, R0 = {0}, Rk = ⊕k−1
j=0(A + BK)jW is a disturbance tube,

and N > 0 is the horizon. Note that we do not constrain the initial condition xn, and this
reduces the conservativeness of the MPC formulation. We will refer to the set Ω as a terminal
set. The interpretation of the function ψn is a cost function on the states and inputs of the
system.

2 Recursive Properties

Suppose that (A,B) is stabilizable and K is a matrix such that (A + BK) is stable. For
this given system and feedback controller, suppose we have a maximal output admissible
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disturbance invariant set Ω (meaning that this set has constraint satisfaction Ω ⊆ {x : x ∈
X , Kx ∈ U} and disturbance invariance (A+BK)Ω⊕W ⊆ Ω).

Next, note that conceptually our decision variables are ck since the xk, ǔk are then
uniquely determined by the initial condition and equality constraints. As a result, we will
talk about solutions only in terms of the variables ck. In particular, if Mn = {cn, . . . , cn+N−1}
is feasible for the optimization defining linear MPC with an initial condition xn, then the
system that applies the control value un = Kxn + cn[Mn] results in:

• Recursive Feasibility: there exists feasible Mn+1 for xn+1;

• Recursive Constraint Satisfaction: xn+1 ∈ X .

We will give a sketch of the proof for these two results.

• Choose Mn+1 = {c1[Mn], . . . , cN−1[Mn], 0}. Some algebra gives that xn+1+k[Mn+1] =
xn+1+k[Mn]+(A+BK)kdn ∈ xn+1+k[Mn]⊕(A+BK)kW . But because Mn is feasible,
it must be that xn+1+k[Mn] ∈ X ⊖Rk+1. Combining this gives

xn+1+k[Mn+1] ∈ xn+1+k[Mn]⊕ (A+BK)kW
⊆ X ⊖ (Rk ⊕ (A+BK)kW)⊕ (A+BK)kW
⊆ X ⊖Rk.

This shows feasibility for the states; a similar argument can be applied to the inputs.
The final state needs to be considered separately. The argument above gives

xn+1+N−1[Mn+1] ∈ Ω⊖RN−1.

Observe that the constraint satisfaction property of Ω leads to

ǔn+1+N−1[Mn+1] = Kxn+1+N−1[Mn+1] ⊆ KΩ⊖KRN−1 ⊆ U ⊖KRN−1.

Lastly, note that the disturbance invariance property of Ω gives

xn+1+N [Mn+1] ∈(A+BK)Ω⊖ (A+BK)RN−1

⊆ (Ω⊖W)⊖ (A+BK)RN−1 = Ω⊖RN .

• Since xn+1 = xn+1[Mn] + dn ∈ (X ⊖W)⊕W ⊆ X , the result follows.

There is an immediate corollary of this theorem: If there exists feasible M0 for x0, then the
system is (a) Lyapunov stable, (b) satisfies all state and input constraints for all time, (c)
feasible for all time.

Lastly, define XF = {xn| there exists feasible Mn}. It must be that Ω ⊆ XF , and in
general XF will be larger. There is in fact a tradeoff between the values of N and the size of
the set XF . Feasibility requires being able to steer the system into Ω at time N . The larger N
is, the more initial conditions can be steered to Ω and so XF will be larger. However, having
a larger N means there are more variables and constraints in our optimization problem, and
so we will require more computation for larger values of N .
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