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CONTROLLABILITY

1 Definitions
Consider a discrete time LTT system:
Tni1 = Az, + Bu,, x9=2~¢&.
We have two related definitions. The LTT system defined by the pair (A, B) is:

1. controllable it and only if given any time m > p + 1 and any coordinate ¢ there exists a
sequence of inputs ug, Uy, . . ., Up—1 such that z,, = ¢;

2. stabilizable if and only if there exists a sequence of inputs ug, Uy, . . . such that ||z, | — 0.

‘These definitions are related because if an LTT system is controllable, then it is also stabilizable. The
converse is not true: There are stabilizable LTT systems that are not controllable.

2 Conditions

We will describe several conceptual approaches to checking for controllability or stabilizability for
(A, B).

1. Define the controllability matrix
C=[B AB A’B ... A"B]
'The pair (A, B) is controllable if and only if rank(C) = p.
2. 'The Popov—Belevitch—Hautus (PBH) test is that (A, B) is controllable if and only if
rank([sﬂ —A BD =p, Vs e C.
Furthermore, (A, B) is stabilizable if and only if

rank ([sI— A B]) =p,Vs€C:|s| > 1.



3. Consider matrices A such that that |(c(A));| < 1. The pair (A, B) is controllable if and only
if the unique solution W' to
AWA —W = —BB'

is positive definite (i.e., W > 0). Observe that this is an LMI and can be solved using convex
optimization approaches. Note that this W (if it exists) is equal to

W = f: A*BB'(A")*,
k=0
which is known as the reachability Gramian.
4. The pair (A, B) is stabilizable if and only if there is a positive definite P > 0 solution to
APA'— P < BB'.

Note that this is an LMI and can be solved using convex optimization approaches.

3 Linear Feedback

'The concepts of controllability and stabilizability are important because of the following result: An
LTT system (A, B) is stabilizable if and only if there exists a constant matrix X € RP*? such that
choosing state-feedback input u = Kz leads to a stable system

Tpi1 = Ax, + Bu, = Az, + BKz, = (A+ BK)x,,

meaning that the eigenvalues of A + BK lie within the complex unit disc.

'The condition of controllability is even more powerful. Let A1, Ao, ..., A, € Cbe fixed complex
numbers. If (A, B) is controllable, then there exists a K such that the eigenvalues of A + BK are
precisely the Aj, Ao, ..., A\, that were chosen.

4 Finite Horizon Linear Quadratic Regulator (LQR)

Consider the following optimization problem

N
min {Z 2 Qr, + u, Ruy, : Ty = Az, + Bun} ,

n=0

where () > 0 and R > 0 are positive definite matrices. The minimizer is given by u,, = K, xz,,
where

K,=—(R+BP,B)'B'P,A
and P, is defined recursively by Py = ) and
P,.1=Q+A(P,— P,B(R+ B'P,B)"'B'P,)A.

'The value function of this optimization is V() = x{ Pyxy.
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5 Infinite Horizon Linear Quadratic Regulator (LQR)

Consider the following optimization problem

min {Zm;@mn +ul Ruy, : py1 = Az, + Bun} ,

n=0

where () > 0 and R > 0 are positive definite matrices. Note that this minimum may not be finite
unless we impose additional restrictions.

In particular, suppose that (A, B) is stabilizable. Then the minimizer is given by u,, = Kz,
(i.e., state-feedback with constant gain), where

K =—(R+ B'PB)"'B'PA
and P > 0 is the unique solution to the discrete time algebraic Riaccati equation (DARE)
P=Q+ A(P— PB(R+ B'PB)"'B'P)A.

'The value function of this optimization is V' (z¢) = z{Px¢. Furthermore, A + BK is stable. There
is an alternative characterization of this P as the solution to the following LMI:

max tr(P)

s.t. P>0
APA+Q—-P  B'PA >0
A'PB R+ B'PB| ~
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