
IEOR 290A – L 15
C

1 Definitions

Consider a discrete time LTI system:

xn+1 = Axn +Bun, x0 = ξ.

We have two related definitions. e LTI system defined by the pair (A,B) is:

1. controllable if and only if given any time m ≥ p + 1 and any coordinate ϕ there exists a
sequence of inputs u0, u1, . . . , um−1 such that xm = ϕ;

2. stabilizable if and only if there exists a sequence of inputs u0, u1, . . . such that ∥xn∥ → 0.

ese definitions are related because if an LTI system is controllable, then it is also stabilizable. e
converse is not true: ere are stabilizable LTI systems that are not controllable.

2 Conditions

We will describe several conceptual approaches to checking for controllability or stabilizability for
(A,B).

1. Define the controllability matrix

C =
[
B AB A2B . . . Ap−1B

]
e pair (A,B) is controllable if and only if rank(C) = p.

2. e Popov–Belevitch–Hautus (PBH) test is that (A,B) is controllable if and only if

rank
([
sI− A B

])
= p, ∀s ∈ C.

Furthermore, (A,B) is stabilizable if and only if

rank
([
sI− A B

])
= p,∀s ∈ C : |s| ≥ 1.
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3. Consider matrices A such that that |(σ(A))i| < 1. e pair (A,B) is controllable if and only
if the unique solution W to

AWA′ −W = −BB′

is positive definite (i.e.,W > 0). Observe that this is an LMI and can be solved using convex
optimization approaches. Note that this W (if it exists) is equal to

W =
∞∑
k=0

AkBB′(A′)k,

which is known as the reachability Gramian.

4. e pair (A,B) is stabilizable if and only if there is a positive definite P > 0 solution to

APA′ − P < BB′.

Note that this is an LMI and can be solved using convex optimization approaches.

3 Linear Feedback

e concepts of controllability and stabilizability are important because of the following result: An
LTI system (A,B) is stabilizable if and only if there exists a constant matrix K ∈ Rp×q such that
choosing state-feedback input u = Kx leads to a stable system

xn+1 = Axn +Bun = Axn +BKxn = (A+BK)xn,

meaning that the eigenvalues of A+BK lie within the complex unit disc.
e condition of controllability is evenmore powerful. Letλ1, λ2, . . . , λp ∈ C be fixed complex

numbers. If (A,B) is controllable, then there exists a K such that the eigenvalues of A+ BK are
precisely the λ1, λ2, . . . , λp that were chosen.

4 Finite Horizon Linear Quadratic Regulator (LQR)

Consider the following optimization problem

min
{

N∑
n=0

x′
nQxn + u′

nRun : xn+1 = Axn +Bun

}
,

where Q > 0 and R > 0 are positive definite matrices. e minimizer is given by un = Knxn,
where

Kn = −(R +B′PnB)−1B′PnA

and Pn is defined recursively by PN = Q and

Pn−1 = Q+ A′(Pn − PnB(R +B′PnB)−1B′Pn)A.

e value function of this optimization is V (x0) = x′
0P0x0.
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5 Infinite Horizon Linear Quadratic Regulator (LQR)

Consider the following optimization problem

min
{

∞∑
n=0

x′
nQxn + u′

nRun : xn+1 = Axn +Bun

}
,

where Q > 0 and R > 0 are positive definite matrices. Note that this minimum may not be finite
unless we impose additional restrictions.

In particular, suppose that (A,B) is stabilizable. en the minimizer is given by un = Kxn

(i.e., state-feedback with constant gain), where

K = −(R +B′PB)−1B′PA

and P > 0 is the unique solution to the discrete time algebraic Riaccati equation (DARE)

P = Q+ A′(P − PB(R +B′PB)−1B′P )A.

e value function of this optimization is V (x0) = x′
0Px0. Furthermore, A+BK is stable. ere

is an alternative characterization of this P as the solution to the following LMI:

max tr(P )

s.t. P ≥ 0[
A′PA+Q− P B′PA

A′PB R +B′PB

]
≥ 0.
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