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1 Nonlinear Dynamical Systems

Consider the following nonlinear dynamical system in discrete time:

xn+1 = f(xn, un), x0 = ξ

where xn, xn+1 ∈ Rp, un ∈ Rq, f : Rp × Rq → R is a nonlinear function, the subscripts denote
discrete time indices, and ξ ∈ Rp is an initial condition. In this model, the xn are called states, and
the un are inputs. e states represent the internal memory of the system, and they also summarize
the history (past states and inputs) of the system. e inputs can be used to steer the system to
satisfy engineering objectives.

A point x∗ is an equilibrium point of the nonlinear system if there exists u∗ such that x∗ =
f(x∗, u∗). e intuition is that this is a point such that a constant input of u∗ keeps the system at
x∗ whenever the system is already at x∗. Without loss of generality, we will assume that x∗ = 0
and u∗ = 0; note that this also implies that f(0, 0) = 0. (We can always define a translation of our
coordinate system in which this assumption is true.)

2 Definitions of Stability

Such nonlinear systems have many interesting properties, and we will begin by discussing one type
of property known as stability. In fact, there are several notions of stability in nonlinear systems,
and the intuition is that a stable system has states that remain bounded.

2.1 L S

A system is Lyapunov stable if given M2 > 0 there exists M1 > 0 such that ∥x0∥ ≤ M1 implies
that ∥xn∥ ≤ M2 for all n ≥ 0.

2.2 A S

We say that a system is locally asymptotically stable (LAS) if (a) it is Lyapunov stable, and (b) there
exists M3 > 0 such that ∥xn∥ → 0 whenever ∥x0∥ ≤ M3. A system is globally asymptotically
stable (GAS) if M3 = ∞.

1



2.3 E S

A system is exponentially stable if (a) it is asymptotically stable, and (b) there exists M3 > 0
and α, β > 0 such that ∥xn∥ ≤ α∥x0∥ exp(−βn) whenever ∥x0∥ ≤ M3. A system is globally
exponentially stable if M3 = ∞.

3 Linear Dynamical Systems

An important special case of a nonlinear dynamical system is the situation in which the dynamics
are linear and time invariant. In this case, the linear time invariance (LTI) dynamical system in
discrete time can be described by

xn+1 = Axn +Bun, x0 = ξ

whereA ∈ Rp×p andB ∈ Rp×q. is special case is useful because it can be analyzed using powerful
machinery from linear algebra.

e first thing to observe is that we can identify every equilibrium point of this linear system.
Note that equilibrium points satisfy

x∗ = Ax∗ +Bu∗ ⇒
[
I− A B

] [ x∗

−u∗

]
= 0.

us, the set of all equilibrium points and the corresponding control inputs is characterized by the
null space of the matrix

[
I− A B

]
.

Stability is relatively straightforward for LTI systems. It turns out that LAS, GAS, and ex-
ponential stability are equivalent for LTI systems. Furthermore, LAS/GAS/exponential stability
imply Lyapunov stability. Given a matrix A, there are multiple ways to check for exponential sta-
bility. An LTI system is exponentially stable if and only if

1. |σ(A)| < 1 (all eigenvalues have magnitude strictly less than one);

2. rank(
[
sI− A

]
) = p for all s ∈ C : |s| ≥ 1;

3. given any Q > 0, there exists unique P > 0 such that A′PA − P < −Q; this equation
is known as a Lyapunov equation, and it is a Linear Matrix Inequality (LMI) which means
that it can be represented as a convex feasibility problem; the interpretation is that x′Px is
an energy function that decreases at rate

x′
n+1Pxn+1 − x′

nPxn = x′
nA

′PAxn − x′
nPxn = x′

n(A
′PA− P )xn < −x′

nQxn;

3.1 B-I B-O S

An LTI system is bounded-input bounded-output (BIBO) stable if there exists 0 ≤ k < ∞ such
that for all bounded input sequences {u0, u1, . . .} the following holds:

max
n≥0

∥xn∥ ≤ k ·max
n≥0

∥un∥.

One can think of the k as a gain. It turns out that BIBO stability is equivalent to LAS/GAS/exponential
stability for LTI systems.
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