IEOR 290A — LecTUure 1
ORDINARY LEAST SQUARES

1 Regression

Suppose that we have a systern in which an input 2 € R* gives an output y € R, and suppose that
there is a static relationship between = and y that is given by y = f(z) + ¢, where € is zero mean
noise with finite variance (i.e., E(¢) = 0 and var(e) = 0? < 00). We will also assume that € is
independent of x; otherwise our model has what is known as endogeneity, which is a common topic
of study in econometrics.

'The process of modeling involves using measured data to identify the relationship between x and v,
meaning identify E[y|z] = f(x). This is a huge topic of inquiry, but in this course we will categorize
this regression problem into three classes:

1. Parametric Regression — The unknown function f(x) is characterized by a finite number
of parameters. It is common to think of f(z; ), where 8 € RP is a vector of unknown
parameters. The simplest example is a linear model, in which we have

flw;B) =) B,
j=1

This approach is used when there is strong a priori knowledge about the structure of the
system (e.g., physics, biology, etc.).

2. Nonparametric Regression —The unknown function f(z) is characterized by an infinite num-
ber of parameters. For instance, we might want to represent f(z) as an infinite polynomial
expansion

f(@) = Bo+ Pz + Boz® + ...

'This approach is used when there is little @ priori knowledge about the structure of the system.
'Though it might seem that this approach is superior because it is more flexible than parametric
regression, it turns out that one must pay a statistical penalty because of the need to estimate
a greater number of parameters.

3. Semiparametric Regression — The unknown function f(z) is characterized by a component
with a finite number of parameters and another component with an infinite number of pa-
rameters. In some cases, the infinite number of parameters are known as nuisance parameters;



however, in other cases this infinite component might have useful information in and of itself.
A classic example is a partially linear model:

f(z) = Zﬁjxj + g(z™*t, L 2k,
j=1

Here, the g(z™*!, ..., 2%) is represented non-parametrically, and the > oy Bjx’ term is the
parametric component.

'This categorization is quite crude because in some problems the classes can blend into each other.
For instance, high-dimensional parametric regression can be thought of as nonparametric regres-
sion. The key problem in regression is that of regularization. The idea of regularization is to improve
the statistical properties of estimates by imposing additional structure onto the model.

2 Ordinary Least Squares

Suppose that we have pairs of independent measurements (z;, y;) fori = 1,...,n, where z; € R?
and y; € R, and that the system is described by a linear model

p
yi = Zﬁjxf +€ =0 + €.
=1

Ordinary least squares (OLS) is a method to estimate the unknown parameters 5 € RP given
our n measurements. Because the y; are noisy measurements (whereas the x; are not noisy in this

model), the intuitive idea is to choose an estimate 5 € R? which minimizes the difference between
the measured y; and the estimated y; = z.0.

There are a number of ways that we could characterize this difference. For mathematical and com-
putational reasons, a popular choice is the squared loss: This difference is quantified as >, (y; — 9:)?,

and the resulting problem of choosing /3 to minimize this difference can be cast as the following
(unconstrained) optimization problem:

For notational convenience, we will define a matrix X € R™*? and a vector Y € R" such that the
i-th row of X is 2} and the i-th row of Y is ;. With this notation, the OLS problem can be written
as

f = argmin |V = X B3,

where || - |2 is the usual L?-norm. (Recall that for a vector v € R* the L?-norm is ||v|j, =

VO ..+ (0F)2)




Now given this notation, we can solve the above defined optimization problem. Because the prob-
lem is unconstrained, setting the gradient of the objective to zero and solving the resulting algebraic
equation will give the solution. For notational convenience, we will use the function J(X,Y’; 5) to
reference to the objective of the above optimization problem. Computing its gradient gives

Vs =2X'(Y - X[)=0= X'X3=X'Y
= [ =(X'X)"HXY).

This is the OLS estimate of 3 for the linear model. In some cases, the solution is written as § =
(1X’X)"1(2X'Y). The reason for this will be discussed in future lectures.
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