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1 Regression

Suppose that we have a system in which an input x ∈ Rk gives an output y ∈ R, and suppose that
there is a static relationship between x and y that is given by y = f(x) + ϵ, where ϵ is zero mean
noise with finite variance (i.e., E(ϵ) = 0 and var(ϵ) = σ2 < ∞). We will also assume that ϵ is
independent of x; otherwise our model has what is known as endogeneity, which is a common topic
of study in econometrics.

e process of modeling involves using measured data to identify the relationship between x and y,
meaning identifyE[y|x] = f(x). is is a huge topic of inquiry, but in this course we will categorize
this regression problem into three classes:

1. Parametric Regression – e unknown function f(x) is characterized by a finite number
of parameters. It is common to think of f(x; β), where β ∈ Rp is a vector of unknown
parameters. e simplest example is a linear model, in which we have

f(x; β) =

p∑
j=1

βjx
j.

is approach is used when there is strong a priori knowledge about the structure of the
system (e.g., physics, biology, etc.).

2. Nonparametric Regression –e unknown function f(x) is characterized by an infinite num-
ber of parameters. For instance, we might want to represent f(x) as an infinite polynomial
expansion

f(x) = β0 + β1x+ β2x
2 + . . . .

is approach is used when there is little a priori knowledge about the structure of the system.
ough it might seem that this approach is superior because it is more flexible than parametric
regression, it turns out that one must pay a statistical penalty because of the need to estimate
a greater number of parameters.

3. Semiparametric Regression – e unknown function f(x) is characterized by a component
with a finite number of parameters and another component with an infinite number of pa-
rameters. In some cases, the infinite number of parameters are known as nuisance parameters;
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however, in other cases this infinite component might have useful information in and of itself.
A classic example is a partially linear model:

f(x) =
m∑
j=1

βjx
j + g(xm+1, . . . , xk).

Here, the g(xm+1, . . . , xk) is represented non-parametrically, and the
∑m

j=1 βjx
j term is the

parametric component.

is categorization is quite crude because in some problems the classes can blend into each other.
For instance, high-dimensional parametric regression can be thought of as nonparametric regres-
sion. e key problem in regression is that of regularization. e idea of regularization is to improve
the statistical properties of estimates by imposing additional structure onto the model.

2 Ordinary Least Squares

Suppose that we have pairs of independent measurements (xi, yi) for i = 1, . . . , n, where xi ∈ Rp

and yi ∈ R, and that the system is described by a linear model

yi =

p∑
j=1

βjx
j
i + ϵi = x′

iβ + ϵi.

Ordinary least squares (OLS) is a method to estimate the unknown parameters β ∈ Rp given
our n measurements. Because the yi are noisy measurements (whereas the xi are not noisy in this
model), the intuitive idea is to choose an estimate β̂ ∈ Rp which minimizes the difference between
the measured yi and the estimated ŷi = x′

iβ̂.

ere are a number of ways that we could characterize this difference. For mathematical and com-
putational reasons, a popular choice is the squared loss: is difference is quantified as

∑
i(yi− ŷi)

2,
and the resulting problem of choosing β̂ to minimize this difference can be cast as the following
(unconstrained) optimization problem:

β̂ = argmin
β

n∑
i=1

(yi − x′
iβ)

2.

For notational convenience, we will define a matrix X ∈ Rn×p and a vector Y ∈ Rn such that the
i-th row ofX is x′

i and the i-th row of Y is yi. With this notation, the OLS problem can be written
as

β̂ = argmin
β

∥Y −Xβ∥22,

where ∥ · ∥2 is the usual L2-norm. (Recall that for a vector v ∈ Rk the L2-norm is ∥v∥2 =√
(v1)2 + . . .+ (vk)2.)
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Now given this notation, we can solve the above defined optimization problem. Because the prob-
lem is unconstrained, setting the gradient of the objective to zero and solving the resulting algebraic
equation will give the solution. For notational convenience, we will use the function J(X, Y ; β) to
reference to the objective of the above optimization problem. Computing its gradient gives

∇βJ = 2X ′(Y −Xβ̂) = 0 ⇒ X ′Xβ̂ = X ′Y

⇒ β̂ = (X ′X)−1(X ′Y ).

is is the OLS estimate of β for the linear model. In some cases, the solution is written as β̂ =
( 1
n
X ′X)−1( 1

n
X ′Y ). e reason for this will be discussed in future lectures.
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