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ABSTRACT
Experimentally comparing the energy usage and comfort
characteristics of different controllers in heating, ventila-
tion, and air-conditioning (HVAC) systems is difficult be-
cause variations in weather and occupancy conditions pre-
clude the possibility of establishing equivalent experimental
conditions across the order of hours, days, and weeks. This
paper is concerned with defining quantitative metrics of en-
ergy usage and occupant comfort, which can be computed
and compared in a rigorous manner that is capable of de-
termining whether differences between controllers are sta-
tistically significant in the presence of such environmental
fluctuations. Experimental case studies are presented that
compare two alternative controllers (a schedule controller
and a hybrid system learning-based model predictive con-
troller) to the default controller in a building-wide HVAC
system. Lastly, we discuss how our proposed methodology
may also be able to quantify the efficiency of other building
automation systems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—control theory, performance, mea-
surement ; J.7 [Computer Applications]: Computers in
Other Systems—command and control

General Terms
Experimentation,Measurement,Performance

Keywords
HVAC, energy-efficiency, comfort, metrics, control

∗Open source software that implements our methodology in
the MATLAB language can be found at the following link
http://hybrid.eecs.berkeley.edu/~NEDE/compEng.zip

1. INTRODUCTION
Heating, ventilation, and air-conditioning (HVAC) systems
contribute to a significant fraction of building energy usage.
As a result, these systems have seen an increasing amount of
research towards their modeling and efficient control (e.g.,
[16, 10, 17, 13, 3, 14]). The primary challenge is ensuring
comparable levels of occupant comfort, in relation to exist-
ing HVAC controllers, while achieving reductions in energy
consumption. Simulations and experiments indicate that
this goal is achievable for a large variety of systems.

Experimentally comparing the energy efficiency and comfort
of different control schemes is difficult because of the large
temporal variability in weather and occupancy conditions.
Furthermore, energy usage of HVAC equipment does not
typically scale linearly in the relevant variables. For exam-
ple, a simplistic model would state that the amount of en-
ergy E required to maintain a set point of Ts for the supply
air temperature (SAT) of an HVAC system with a warmer
outside air temperature (OAT) of To(> Ts) is proportional
to E ∼ To − Ts. We have observed on our building-wide
testbed [5] that such models do not capture the complex en-
ergy characteristics of the equipment. One reason for this is
that some equipment is designed to operate most efficiently
at certain temperatures or settings.

There is an additional difficulty in experimentally comparing
the efficiency of different control schemes. Not all buildings
have equipment to directly measure the energy consumption
of only HVAC equipment. It is common for energy mea-
surements to include appliances, water heating, and other
sources of energy consumption that are difficult to disaggre-
gate from HVAC energy usage. Such disaggregation is hard
because the energy signature and characteristics of HVAC
equipment is often similar to appliances like refrigerators or
water heaters. Another reason that disaggregation is dif-
ficult is that installing separate meters to measure energy
usage of an HVAC system that is physically and electrically
distributed throughout a building can be cost-prohibitive.
As a result, experimental comparison may require compar-
ing measurements for which the absolute differences are a
small percentage of the total. Determining whether such
differences are statistically significant can be challenging.

The purpose of this paper is to propose a set of quantita-
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Type Description
Option A Measuring key variables that affect

HVAC energy consumption
Option B Directly meausuring HVAC energy

consumption
Option C Measuring whole building or sub-

building energy consumption
Option D Estimating HVAC energy consumption

using simulation models

Table 1: The International Performance Measure-
ment and Verification Protocol (IPMVP) [6] cate-
gorizes approaches to comparing energy usage into
four groups.

tive methods for comparing different HVAC control schemes.
We define quantitative metrics of efficiency and comfort,
and we introduce a mathematical framework for computing
these metrics and then determining whether differences in
these metrics are statistically significant. For the benefit of
the sustainability community, we have provided open source
software that implements our comparison methodology in
the MATLAB programming language. A case study of ex-
periments on our building-wide testbed shows the utility of
the proposed techniques.

2. EXISTING COMPARISON METHODS
The International Performance Measurement and Verifica-
tion Protocol (IPMVP) [6] classifies approaches to tracking
energy usage into four general classes, and it is summarized
in Table 1. Though IPMVP is a standard protocol for eval-
uating energy usage of different building components, here
we restrict our discussion to HVAC equipment. One class in
IPMPV is called Option A and refers to measuring key vari-
ables that affect HVAC energy consumption. An example
is measuring the OAT and the SAT settings. Another class
is called Option B and involves directly measuring energy
usage of the HVAC. Option C is the situation in which the
whole building or sub-building energy usage is measured,
while Option D involves utilizing simulation models that es-
timate HVAC energy consumption.

The approach in [3], where the energy consumption of two
control schemes on a single-room testbed with central air
conditioning were compared, was a combination of Option
B and Option D. Mathematical models of the temperature
dynamics of different control schemes and their energy char-
acteristics were constructed in order to allow comparisons
of experimentally measured HVAC energy usage to simula-
tions over identical weather and occupancy conditions. Un-
fortunately, this method does not easily scale from the small
system considered in [3] to building-sized HVAC systems be-
cause of additional complexities of building-sized systems.

In [18], the energy usage of two controllers for a ceiling ra-
diant heating system was compared using an Option A ap-
proach. The temperature difference between the OAT and
the set point for a loop of hot water was used to evaluate
the energy efficiency of different control methods. The gen-
eral challenge with using Option A is that, depending on the
particular HVAC equipment, the energy usage can scale in

complex ways as a function of the key parameters that are
measured. Moreover, auxiliary equipment in an HVAC sys-
tem (e.g., pumps, fans) often significantly contribute to en-
ergy usage; such parameters and their relationship to energy
consumption are not usually measured or well understood.

Optimization of thermal storage for campus-wide building
cooling was considered in [14], and the energy usage of dif-
ferent controllers was compared using an Option B approach
coupled with a regression model of baseline performance:
This indicates large energy savings when using novel con-
trollers. Such an analysis is only possible when direct en-
ergy measurements of the equipment are available; when this
is not the case, the differences in measurements of two con-
trollers can often be a small percentage of the total building-
wide energy consumption. A regression model alone cannot
determine whether such differences are statistically signifi-
cant.

We believe that a more unbiased approach for comparing
HVAC is Option C combined with simple models. Note
that our proposed method also applies to Option B, when
the HVAC energy usage is directly measured. Experiments
on our testbeds indicate a significant impact of OAT on
the energy characteristics of HVAC systems. Our proposed
method is to use nonparametric modeling methods to com-
pute quantitative metrics of energy usage and occupant com-
fort, as they relate the OAT. This framework allows for addi-
tional nonparametric tools that can determine whether the
differences in energy usage and occupant comfort of different
HVAC controllers are statistically significant.

3. EXPERIMENTAL SETUP
In order to ensure fair comparisons between different con-
trol methods, it is imperative that the experiments be con-
ducted using identical building and HVAC configurations.
For the sake of argument, suppose that controller 1 is the
manufacturer’s configuration, and controller 2 is identical to
controller 1 except for that it turns the HVAC off during
the night time. Then controller 2 can achieve substantial
energy savings, but this does not reflect savings due to con-
trol schemes: The energy savings are due to having different
configurations of comfort levels.

When comparing HVAC controllers, settings related to occu-
pant comfort should be kept constant because the majority
of energy is used in maintaining comfort. The specific set-
tings that need to be kept equal will vary depending upon
the building, but important variables to consider include
desired temperatures in different building zones, allowable
amounts of temperature deviation in these zones, and min-
imum and maximum amounts of air flow.

There is another experimental issue that is subtle: It is in-
correct to keep repeating the analysis as more experimen-
tal data is measured, without making corrections to the
methodology. The reason is that the probability of making
errors accumulates each time the hypothesis testing method-
ology is used with additional data. Corrections would need
to be made to ensure that the accumulated probability of
error does not grow too large. This can be done in a prin-
cipled manner using techniques from sequential hypothesis
testing (e.g., [20, 15, 8]); though, we do not discuss in our
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Figure 1: The scatter plot shows the data points
(T0[i], E[i]), and the smooth curve is the estimated en-

ergy characteristic Êo,x(T0) for an HVAC controller.

paper on how to do so. Here, we assume that the analysis
is conducted once with a fixed amount of data.

4. MEASURING ENERGY EFFICIENCY
Without loss of generality, we assume that building-wide
measurements of energy usage are available at hourly inter-
vals. These values will be denoted as E[i] for i = 1, . . . , N
measurements. Again, note that this framework also ap-
plies to the situations where energy usage is measured at
daily intervals and where the HVAC energy usage is directly
measured. Furthermore, we assume the availability of OAT
measurements that correspond to the energy usage measure-
ments: To[i] for i = 1, . . . , N .

4.1 Quantifying Energy Consumption
The general model describing the relationship between en-
ergy usage, OAT, occupancy O, and other factors (e.g., solar
effects, equipment, etc.) X is

E = f(To, O,X), (1)

where f(·, ·, ·) is a nonlinear relationship that is unknown.
However, occupancy and other factors are generally not di-
rectly measured (though their effects on the thermal dynam-
ics and energy usage can be estimated using semiparametric
regression [3, 5]). As a result, it is typically only possible
to consider the energy usage averaged over occupancy and
other factors

Eo,x(To) = E
[
f(To, O,X)

∣∣To

]
. (2)

Equation (2) can be estimated using nonparametric regres-
sion [9]. (We use local linear regression in the provided
code.) It is not a single value, but is rather a curve that
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Figure 2: The solid line indicates the set point of a
zone throughout a single day, and the extent of the
dashed lines describes the band of comfort.

describes the relationship between the OAT and the av-
erage energy consumption. Intuitively, if the data points
(To[i], E[i]) for i = 1, . . . , N represent a scatter plot of en-

ergy usage versus OAT; then the estimated curve Êo,x(To)
represents the smoothed version of the scatter plot. An il-
lustration of this can be seen in Fig. 1.

The average amount of energy used in one hour is therefore

Eg = Eg

(
Eo,x(To)

)
= Eg

[
E
[
f(To, O,X)

∣∣To

]]
, (3)

where g(To) is a probability distribution of OATs. This no-
tation allows us to define the average amount of energy used
in one day as Eday =

∑24
i=1Egi , where gi(To) is the proba-

bility distribution of OAT during the i-th hour of the day.
For simplicity of calculations, the source code we provide
assumes a uniform distribution for the OAT.

4.2 Interpretation of Energy Characteristics
It is well known (e.g., [11]) that the energy characteristics
of HVAC have the following qualitative features: Energy us-
age is lowest at moderate OATs, and the consumption of
energy increases as the OAT increases or decreases. Physi-
cally, the minimum in the energy characteristic corresponds
to the OAT at which the building switches between pre-
dominantly heating and predominantly cooling. This can
be seen in Fig. 1, which uses measurements taken from our
building-wide HVAC testbed. The quantitiative features of
the energy characteristics vary depending upon the HVAC
controller and other specific characteristics of the building
and its weather microclimate.

4.3 Comparing Energy Consumption
We make the assumption that exactly two different control
schemes are being compared; such an assumption is not re-
strictive, because we can do a set of pairwise comparisons
with appropriate corrections made for multiple hypothesis
testing. The two controllers being compared will be re-
ferred to as controller 1 and controller 2, and they will be
denoted using a superscript 1 and 2, respectively. Though
we could compute the average amount of energy used in
one day for each controller, there is no guarantee a priori
that the difference of these estimated energy characteristics
Ê1

o,x(To), Ê2
o,x(To) is statistically significant
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Figure 3: The scatter plot shows the data points
(T0[i], C[i]), and the smooth curve is the estimated

comfort characteristic Ĉo,x(T0) for an HVAC con-
troller.

Our approach is to use a hypothesis test to quantify the
evidence for the statement that the estimated characteris-
tics for the two controllers are equal: Ê1

o,x(To) = Ê2
o,x(To).

If the p-value of this test is less than a significance level α,
then we can say that the difference is statistically significant.
Otherwise, the difference is not statistically significant if the
p-value is greater than α. The code we provide uses a sig-
nificance level of α = 0.01, and note that the intuition is
that α gives the probability of incorrectly concluding that a
difference is statistically significant.

Because the curves Ê1
o,x(To), Ê2

o,x(To) are computed using
nonparametric methods, it is not possible to use common
methods like the t-test to compare them. Nonparametric
hypothesis tests based on bootstrap procedures are an at-
tractive alternative for our situation [19]. However, there is
a temporal correlation between the measured energy usage
E[i] for different values of i. This precludes the use of re-
sampling residuals bootstrap, which is a standard bootstrap
method.

The methodology we propose makes use of a nonparamet-
ric hypothesis test that utilizes the moving block bootstrap.
This form of bootstrap is designed to handle dependent data
in which there is a temporal correlation between measure-
ments. The interested reader can refer to [19] for details
about this hypothesis test, and this is the technique that is
implemented in our code. This is used to determine whether
Ê1

o,x(To), Ê2
o,x(To) are statistically different. We can also

use the same methodology to determine whether the differ-
ence in the estimated average energy usage over one day
∆Ê2,1 = Ê2

day − Ê1
day is not equal to zero to a statisti-

cally significant level. Note that because two hypotheses are
being tested, we must make appropriate adjustments [15]:

Figure 4: Sutardja Dai Hall is 141,000-square-foot
building, and our BRITE-S testbed is within this
building.

Our code uses a Bonferroni correction to generate adjusted
p-values [21].

4.4 Confidence Intervals of Energy Consump-
tion

If the hypothesis test in Sect. 4.3 indicates that ∆Ê2,1 6= 0
to a statistically significant level, then we can interpret both
the value and magnitude of this quantity. If ∆Ê2,1 < 0, then
this means that controller 2 uses less energy than controller
1 on average, and the absolute value |∆Ê2,1| is the average
amount of energy savings over a day due to controller 2 as
compared to controller 1. The opposite statement holds if
∆Ê2,1 > 0.

Since ∆Ê2,1 is an estimated quantity, it will itself have un-
certainty. In order to better characterize the difference be-
tween the energy consumption of controllers 1 and 2, it is
useful to also compute a confidence interval for ∆Ê2,1. For
a confidence level of β ∈ (0, 1], the confidence interval con-
tains the true quantity (e.g., ∆E2,1) for β fraction of the ex-
periments. The same moving block bootstrap methodology
used in Sect. 4.3 can be used to estimated a bias-corrected
bootstrap confidence interval [7].

5. MEASURING OCCUPANT COMFORT
Quantifying the comfort levels of occupants is difficult be-
cause it is a function of many variables: metabolic rate,
clothing insulation, air temperature, radiant temperature,
air speed, and humidity [1]. This problem is further compli-
cated by the fact that most buildings are not instrumented
to measure these variables.

In order to define a quantification of comfort that is both
tractable and will scale to many buildings, we focus on a
measure that is only dependent on temperature; temper-
ature measurements are usually available through existing
thermostats. We assume that the average temperature for
each of the j = 1, . . . , Z zones are measured at hourly inter-
vals Tj [i] for i = 1, . . . , N .

5.1 Band of Comfort



Controller 2 Energy Characteristics ∆Ê2,1 Comfort Characteristics ∆Ĉ2,1

Temperature and Statistically Different −1.16MWh Statistically Different 0.35◦F
Reheat Schedule (p = 0.002) (p = 0.08) (p = 0.002) (p = 0.9)
LBMPC SAT Statistically Different −1.53MWh NOT Statistically Different −0.75◦F
Control (p = 0.002) (p = 0.002) (p = 0.8) (p = 0.5)

Table 2: Summary of case studies on the BRITE-S testbed. Controller 1 is the default, manufacturer-
provided controller, and controller 2 is as indicated. Also, α = 0.05 was taken to be the significance level of
the hypothesis tests.

The j-th zone of a building will have a temperature set point
Sj that can vary throughout the day, and we assume that we
have recorded the average value of this set point at hourly in-
tervals: Sj [i] for i = 1, . . . , N . Furthermore, we assume that
comfort is defined as maintaining zone temperature within
±Bj [i] for i = 1, . . . , N of the set point. It can be visual-
ized as a band of comfort, as shown in Fig. 2. This band is
allowed to vary because the configured comfort levels often
depend on the time of day or week; an example is allow-
ing greater temperature fluctuations in an office building at
night.

Our justification for this notion of comfort is that it corre-
sponds to the Class A, Class B, and Class C notions of com-
fort as defined in [1]. Furthermore, this quantification is im-
plicitly making the assumption that the set point indicates
the true occupant preference. It represents a compromise
between tractability of quantifying comfort and maintain-
ing a reasonable metric.

5.2 Quantifying Occupant Comfort
Let (x)+ be the thresholding function, which is defined so
that (x)+ = 0 if x < 0 and (x)+ = x otherwise. We define
our quantification of comfort using soft thresholding as

C = 1/Z ·
∑Z

j=1

∫ 1

0
(|Tj − Sj | −Bj)+dt, (4)

where the integral with respect to dt is over one hour of time.
The intuition is that this quantity increases whenever a zone
temperature leaves the band of comfort, and the amount of
increase in this quantity is proportional to the amount and
duration of temperature deviation.

Because Tj is implicitly a function of the outside temper-
ature T0, occupancy O, and other factors X, we can ab-
stractly represent the comfort quantification as

C = h(T0, O,X), (5)

where h(·, ·, ·) is a nonlinear relationship that is unknown.
Just as in the case of energy, we consider the comfort aver-
aged over occupancy and other factors

Co,x(T0) = E
[
h(T0, O,X)

∣∣T0

]
, (6)

because they are not measured. We can again generate a
scatter plot of the data points (To[i], C[i]) for i = 1, . . . , N ,
where C[i] =

∑
j(|Tj [i] − Sj [i]| − Bj [i])+. And a smoothed

version can be estimated Ĉo,x(T0) using nonparametric re-
gression. An example of this is seen in Fig. 3.

The average occupant comfort over one hour is given by

Cg = Eg

(
Co,x(T0)

)
= Eg

[
E
[
h(T0, O,X)

∣∣To

]]
, (7)

where g(To) is a probability distribution of OATs. We can
then define the average amount of comfort in one day as
Cday =

∑24
i=1 Cgi , where gi(To) is the probability distribu-

tion of OAT during the i-th hour of the day. Our source
code assumes a uniform distribution for the OAT.

5.3 Interpretation of Comfort Characteristics
The purpose of an HVAC system is to provide uniform levels
of occupant comfort regardless of external and internal con-
ditions, and so the ideal HVAC controller will provide a com-
fort characteristic that is constant across all OATs. How-
ever, in practice it is more difficult for the HVAC to maintain
the building environment when the weather is more extreme.
This leads to slight decreases in comfort (i.e., the comfort
characteristic is higher) at low and high OATs. This can
be seen in Fig. 3, which uses measurements taken from our
building-wide HVAC testbed. The quantitative features of
the comfort characteristics vary depending upon the HVAC
controller and other specific characteristics of the building
and its weather microclimate.

5.4 Comparing Occupant Comfort
Using the hypothesis testing methodology outlined in Sect.
4.3, we can determine (a) whether the estimated comfort

characteristics Ĉ1
o,x(To), Ĉ2

o,x(To) for the two controllers are
statistically different, and (b) whether the difference in the

estimated average comfort over one day ∆Ĉ2,1 = Ĉ2
day −

Ĉ1
day is not equal to zero to a statistically significant level.

Like in Sect. 4.3, we must correct for multiple comparison
effects.

5.5 Confidence Intervals for Occupant Com-
fort

If the hypothesis test in Sect. 4.3 indicates that ∆Ĉ2,1 6= 0
to a statistically significant level, then we can interpret both
the value and magnitude of this quantity. Because lower
values of C correspond to greater comfort levels, we can
interpret the quantity ∆Ĉ2,1 in the same way as ∆Ê2,1 is
interpreted in Sect. 4.4. And because ∆Ĉ2,1 is an esti-
mated quantity, the difference between the comfort levels
of controllers 1 and 2 can be better characterized by also
computing its confidence interval as in Sect. 4.4.

6. CASE STUDY: BRITE-S TESTBED
The Berkeley Retrofitted and Inexpensive HVAC Testbed
for Energy Efficiency in Sutardja Dai Hall (BRITE-S) plat-
form [12, 4] is a building-wide HVAC system that main-
tains the indoor environment of a 141,000-square-foot build-
ing, shown in Fig. 4, that is divided between a four-floor
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Figure 5: The cross marks and solid line (points
and dashed line) denote the energy characteristics
of the schedule (default) controller.

nanofabrication laboratory (NanoLab) and seven floors of
general space (including office space, classrooms, and a cof-
fee shop). The building automation equipment can be mea-
sured and actuated through a BACnet protocol interface.

The HVAC system uses a 650-ton chiller to cool water. Air-
handler units (AHUs) with variable-frequency drive fans dis-
tribute air cooled by the water to variable air volume (VAV)
boxes throughout the building. Since the NanoLab must
operate within tight tolerances, our control design can only
modify the operation of the general space AHUs and VAV
boxes, with no modification of chiller settings that are shared
between the NanoLab and general space.

The default, manufacturer-provided controller in BRITE-
S uses PID loops to actuate the VAV boxes and keeps a
constant SAT within the AHUs. Conventional SAT reset
control is not possible because several VAV boxes for zones
with computer equipment provide maximum air flow rates
throughout the entire day for all, except the coldest SATs.

Here, we present case studies that compare this default con-
troller (controller 1) with two different controllers. Con-
troller 2 will refer to the controller being compared to con-
troller 1. Note that the building is configured to provide a
band of comfort of ±Bj [i] = ±1◦F for all times and zones.
The results of these case studies are summarized in Table 2,
and details are given below.

6.1 Temperature and Reheat Schedule
The first controller to be compared to controller 1 turns
off all heating in the building during the night time, and
it matches the SAT to the OAT in an effort to reduce the
amount of energy used to cool the air. We call this the sched-
ule controller. An Option A analysis that neglects auxiliary
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Figure 6: The cross marks and solid line (points
and dashed line) denote the comfort characteristics
of the schedule (default) controller.

equipment like fans will estimate nearly zero energy usage.
However, our comparison methodology shows that this is
not correct.

The estimated energy characteristics Ê1
o,x(T0), Ê2

o,x(T0) are
shown in Fig. 5, and their differences are statistically sig-
nificant (p = 0.002). However, the estimated difference in

average energy usage over one day ∆Ê2,1 = −1.16MWh is
not statistically significant (p = 0.08), meaning that there is
not enough evidence to exclude that ∆E2,1 = 0MWh.

The estimated comfort characteristics Ĉ1
o,x(T0), Ĉ2

o,x(T0) are
shown in Fig. 6, and their differences are statistically sig-
nificant (p = 0.002). However, the estimated difference in

average comfort over one day ∆Ĉ2,1 = 0.35◦F is not statisti-
cally significant (p = 0.9), meaning that there is not enough
evidence to exclude that ∆C2,1 = 0◦F.

Though the schedule controller saves energy by turning off
heating at night, these savings are somewhat negated by
having to heat the building to a comfortable temperature
during the day (i.e., the hump in Ê2

o,x(T0) at 55◦F). As
compared to the default controller, the schedule controller
substantially degrades comfort at colder temperatures and
provides slight improvements in comfort at moderate tem-
peratures.

6.2 LBMPC Control of Supply Air Tempera-
ture

The second controller to be compared to controller 1 uses a
hybrid system learning-based model predictive controller [2,
4] to determine a sequence of SATs amongst the values of
52◦F, 58◦F, and 64◦F. An Option A analysis provides overly
optimistic estimates of the energy savings due to this con-
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Figure 7: The cross marks and solid line (points and
dashed line) denote the energy characteristics of the
LBMPC (default) controller.

trol method, while the methodology described in this paper
shows modest energy savings.

The estimated energy characteristics Ê1
o,x(T0), Ê2

o,x(T0) are
shown in Fig. 7, and their differences are statistically signifi-
cant (p = 0.002). The estimated difference in average energy

usage over one day ∆Ê2,1 = −1.53MWh is statistically sig-
nificant (p = 0.002). And the 95% confidence interval is

∆Ê2,1 ∈ [−2.07,−1.02]MWh.

The estimated comfort characteristics Ĉ1
o,x(T0), Ĉ2

o,x(T0) are
shown in Fig. 8, and their differences are not statistically
significant (p = 0.8). Furthermore, the estimated difference

in average comfort over one day ∆Ĉ2,1 = −0.75◦F is not
statistically significant (p = 0.5), meaning that there is not
enough evidence to exclude that ∆C2,1 = 0◦F.

The LBMPC controller provides modest energy savings at
most OATs, which sum up to significant savings over a day.
And because the difference in comfort characteristics is not
statistically significant, this suggests that the LBMPC and
default controllers provide comparable levels of comfort.

7. CONCLUSION
We have presented quantitative metrics for comparing the
energy usage and comfort of different HVAC controllers.
These metrics can be computed relatively easily for a wide
variety of buildings and are amenable to methods that can
determine whether experimental differences between con-
trollers are statistically significant. Though our focus here
has been on energy-efficient HVAC control, this methodol-
ogy can be used to compare the efficiency of different build-
ing components such as water heating, lighting, and even
changes in the comfort level of HVAC.
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Figure 8: The cross marks and solid line (points
and dashed line) denote the comfort characteristics
of the LBMPC (default) controller.
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