
Energy-Efficient Building HVAC Control
Using Hybrid System LBMPC ?

Anil Aswani ∗ Neal Master ∗ Jay Taneja ∗ Andrew Krioukov ∗

David Culler ∗ Claire Tomlin ∗

∗ Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA 94720 USA (e-mail:

{aaswani,tomlin}@eecs.berkeley.edu, neal.m.master@berkeley.edu,
{taneja,krioukov,culler}@cs.berkeley.edu).

Abstract: Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC)
systems has the potential to realize large economic and societal benefits. This paper concerns
the system identification of a hybrid system model of a building-wide HVAC system and
its subsequent control using a hybrid system formulation of learning-based model predictive
control (LBMPC). Here, the learning refers to model updates to the hybrid system model that
incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT),
and equipment, in addition to integrator dynamics inherently present in low-level control.
Though we make significant modeling simplifications, our corresponding controller that uses
this model is able to experimentally achieve a large reduction in energy usage without any
degradations in occupant comfort. It is in this way that we justify the modeling simplifications
that we have made. We conclude by presenting results from experiments on our building HVAC
testbed, which show an average of 1.5MWh of energy savings per day (p = 0.002) with a 95%
confidence interval of 1.0MWh to 2.1MWh of energy savings.
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1. INTRODUCTION

Nearly 10% of greenhouse gas emissions and 25% of the
electricity used in the United States is due to heating,
ventilation, and air-conditioning (HVAC) systems in build-
ings (U.S. DoE, 2009; McQuade, 2009). This has driven
research into better control methods (e.g., (Nghiem and
Pappas, 2011; Kelman and Borrelli, 2011; Oldewurtel
et al., 2012; Liao et al., 2012; Aswani et al., 2011b; Ma
et al., 2012)) that can help mitigate the negative exter-
nalities due to the large energy consumption of HVAC,
while still ensuring the comfort of building occupants.
But the heterogeneity of HVAC equipment with respect
to their physical modalities makes it difficult to develop a
control design methodology that scales to many types of
equipment.

Even when new HVAC controllers are designed, experi-
mentally comparing their efficiency and comfort in relation
to existing controllers is difficult because of the large
temporal variability in weather and occupancy conditions.
Identifying energy models of HVAC equipment can be
difficult because some equipment is designed to operate
most efficiently at certain temperatures or settings, which
requires extensive measurement to characterize. Moreover,
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not all buildings have equipment to directly measure the
energy consumption of only HVAC equipment.

1.1 Experiments with HVAC Controllers

Siroky et al. (2011) showed that a linear model predictive
controller (MPC) could provide a 10-20% reduction in en-
ergy usage of a ceiling radiant heating system, as compared
to the default, manufacturer-provided controller. The tem-
perature difference between a water set point and the
outside air temperature (OAT) was used to approximate
the energy usage of each controller.

Aswani et al. (2011b) designed a new controller for an
air-conditioner on a single-room testbed, which achieved
up to 30% savings on warm days and up to 70% savings
on cool days. Mathematical models of the temperature
dynamics of different control schemes and their energy
characteristics were constructed in order to allow com-
parisons between different controllers of experimentally
measured HVAC energy usage to simulations over identical
weather and occupancy conditions.

A 20% improvement in performance of thermal storage for
campus-wide building cooling was achieved by Ma et al.
(2012) using better control methods. Direct energy mea-
surements of the equipment along with a regression model
of baseline performance were used to compare controllers.
This analysis approach requires direct measurements, be-
cause it can only statistically distinguish large differences.
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Fig. 1. Sutardja Dai Hall is 141,000-square-foot building,
and is part of our BRITE-S testbed.

1.2 Overview

This paper describes our design methodology for an
energy-efficient controller of a building-wide HVAC system
that is able to maintain comfortable occupant conditions.
We begin by describing our HVAC testbed, before explain-
ing the modeling procedure (cf. (Aswani et al., 2012b))
that was used to identify the thermal dynamics of the
building and the HVAC system. Next, we describe a hybrid
system (Tomlin et al., 2000) version of learning-based
model predictive control (LBMPC) (Aswani et al., 2011a).

LBMPC is a robust form of adaptive MPC. Compared
to linear parameter-varying MPC (Kothare et al., 2000;
Falcone et al., 2008), LBMPC differs in that it provides
robustness to model changes using tube MPC (e.g., (Chisci
et al., 2001)). Furthermore, the robust, adaptive MPC
in (Fukushima et al., 2007; Adetola and Guay, 2011)
use an adaptive model with an uncertainty measure to
ensure robustness, while LBMPC uses an adaptive model
to improve performance and a nominal model with an
uncertainty measure to provide robustness.

We conclude by experimentally comparing, on a building-
wide HVAC system, our hybrid system LBMPC controller
to the default controller. This is done using the comparison
methodology described in (Aswani et al., 2012a), which
uses nonparametric methods that can compute and com-
pare quantitative metrics of energy usage and occupant
comfort for different HVAC controllers.

2. BRITE-S TESTBED

The Berkeley Retrofitted and Inexpensive HVAC Testbed
for Energy Efficiency in Sutardja Dai Hall (BRITE-S)
platform (Krioukov et al., 2011; Aswani et al., 2012b) is
a building-wide HVAC system that maintains the indoor
environment of a 141,000-square-foot building, shown in
Fig. 1, that is divided between a four-floor nanofabrication
laboratory (NanoLab) and seven floors of general space
(including office space, classrooms, and a coffee shop).
The building automation equipment can be measured and
actuated through a BACnet protocol interface.

The HVAC system uses a 650-ton chiller to cool water. Air-
handler units (AHUs) with variable-frequency drive fans
distribute air cooled by the water to variable air volume
(VAV) boxes throughout the building. Since the NanoLab

must operate within tight tolerances, our control design
can only modify the operation of the general space AHUs
and VAV boxes, with no modification of chiller settings
that are shared between the NanoLab and general space.

The default, manufacturer-provided controller in BRITE-
S uses PID loops to actuate the VAV boxes and keeps a
constant supply air temperature (SAT) within the AHUs.
Conventional SAT reset control is not possible because sev-
eral VAV boxes provide maximum air ow rates throughout
the day for nearly the entire range of SATs. These zones
are often dominated by heating from computer equipment.

3. IDENTIFYING THERMAL DYNAMICS

For the purpose of modeling and control, we will assume
that data is sampled every 15 minutes; angle brackets (i.e.,
〈·〉) denote measurements sampled at this rate. Let Ts〈k〉
and To〈k〉 be the SAT and OAT, respectively, at time k.
Similarly, Tj〈k〉 is the temperature in the j-th zone of
the building at time k, for j = 1, . . . , Z zones. The VAV
box in the j-th zone controls the zone temperature Tj by
modulating the amount of cool air sent to the zone Fj〈k〉
and the amount that the air is reheated Rj〈k〉.
In general, the thermal dynamics of each zone are

Tj〈k + 1〉 = fj

(
T1〈k〉, . . . , TZ〈k〉, F1〈k〉, . . . , FZ〈k〉,

R1〈k〉, . . . , RZ〈k〉, To〈k〉, Ts〈k〉, O,X
)
, (1)

where fj(·) is some unknown nonlinear function, O are
variables related to occupancy, and X are variables related
to other effects like the use of equipment, solar heating,
etc. Some simplifying assumptions are typically made by
(a) considering the physical adjacency of different zones
(Kelman and Borrelli, 2011; Oldewurtel et al., 2012; Liao
et al., 2012), and (b) assuming that the effect of occupancy
and other factors enters additively into the dynamics
(Aswani et al., 2011b, 2012b). After these assumptions,
the model is

Tj〈k + 1〉 = fj

(
Tn1
〈k〉, . . . , Tnq

〈k〉, Fj〈k〉, Rj〈k〉,

To〈k〉, Ts〈k〉
)

+O +X, (2)

where {n1, . . . , nq} is the set of zones adjacent to j.

Additional assumptions allow further modeling simplifica-
tions. We assume that the zone temperatures do not vary
significantly throughout the day, since their temperature
is in principle being controlled by the HVAC system.
Furthermore, we assume that the additive influence of
the occupancy and other effects can be modeled by a
single term qj〈k〉. Even after making these assumptions,
the model to be identified is nonlinear since the SAT Ts
affects the thermal dynamics in a bilinear form (Kelman
and Borrelli, 2011; Oldewurtel et al., 2012).

We take a hybrid system approach by forcing the SATs
to belong to a finite set of values M = {Ts1 , . . . , Tsp},
where p is the number of modes (Aswani et al., 2012b).
This allows us to consider multiple linearizations of (2). In
our application to the BRITE-S testbed, we took p = 3
and M = {52◦F, 58◦F, 62◦F}. For the mi-th mode (for
mi ∈ {1, . . . , p}) of fixed SAT Tsmi

, the model is given by



Tj〈k + 1〉 = ami
n1
Tn1〈k〉+ . . . ami

nq
Tnq 〈k〉

+ bmi
j Fj〈k〉+ cmi

j Rj〈k〉+ dmi
j To〈k〉+ qj〈k〉, (3)

where the coefficients are unknown scalars and qj is an
unknown function of time k. The purpose of the system
identification is to compute these unknown values.

3.1 Experiments for System Identification

In (Aswani et al., 2012b), we used one week of data with a
fixed SAT to identify a model. Identifying a hybrid system
model where the SAT is able to change is more challenging,
because identifying a model of equal fidelity would require
three weeks (since we have three modes) of experimental
data. As a result, we modified our modeling approach. We
conducted experiments in which a small amount of data
was gathered by cycling through all of the SATs in M so
as to cover all of the modes of our hybrid system.

Our experiment was as follows: Starting at midnight, we
set the SAT to Ts1 = 52◦F for two hours. We next set
the SAT to Ts2 = 58◦F for two hours. After this, the SAT
was changed to Ts3 = 64◦F for two hours. During these six,
consecutive hours, the other HVAC configuration was kept
fixed. The reason for picking a relatively quick horizon for
all three experiments is that the heating load is roughly
constant over a short time span.

3.2 Initial Parameter Identification

We used a small amount of training data to construct an
approximate initial model that was used to do control. To
improve the controller performance, we have the option to
re-identify the model using the semiparametric regression
approach discussed in (Aswani et al., 2012b).

The approximate initial model was constructed as follows:
We begin by making additional modeling simplifications.
Specifically, the exogenous heating load term qj〈k〉 was
changed to also include the effects of OAT and adjacent
zone temperatures. For modeling purposes, we assume that
the heating load term does not change significantly over
a short time. This was ensured by conducting the experi-
ments for modeling within a quick time span. We know a
priori that this last assumption is only approximate, but
it serves to provide an initial model for which additional
measurements can then be used to improve it.

Suppose we have (a) measurements for the mi-th mode
at times k such that Lmi

≤ k ≤ Umi
; and (b) prior

distributions for the coefficients ami
j ∼ N (ami

j , ãmi
j ),

bmi
j ∼ N (b

mi

j , b̃mi
j ), cmi

j ∼ N (cmi
j , c̃mi

j ), where the notation

N (µ,Σ) denotes a jointly Gaussian random variable with
mean µ and covariance Σ. Our initial model is given by

Tj〈k+ 1〉 = ami
j Tj〈k〉+ bmi

j Fj〈k〉+ cmi
j Rj〈k〉+ qj〈k〉, (4)

and the coefficients can be identified by solving the follow-
ing Bayesian, constrained least squares problem

min
∑p

mi=1

∑Umi
−1

k=Lmi
(Tj〈k + 1〉 − ami

j Tj〈k〉 (5)

− bmi
j Fj〈k〉 − cmi

j Rj〈k〉 − qj〈k〉)2

+ (ami
j − a

mi
j )2/ãmi

j + (bmi
j − b

mi

j )2/b̃mi
j

+ (cmi
j − c

mi
j )2/c̃mi

j

s.t. arj = asj , ∀r, s ∈ {1, . . . , p} (6)

br+1
j < (Tsr+1/Tsr ) · brj , ∀r ∈ {1, . . . , p− 1} (7)

crj = csj , ∀r, s ∈ {1, . . . , p} (8)

qj〈k〉 = qj〈q〉, ∀k, q ∈
⋃

r∈{1,...,p}[Lr, Ur] (9)

The constraints in the optimization problem reflect con-
straints between different hybrid modes of the HVAC
system. Constraint (6) ensures that the time-constants
of the thermal dynamics are constant for each mode of
the hybrid system, while constraint (7) encodes the fact
that cooler temperatures will provide greater amounts of
cooling in each zone. Constraint (8) reflects that the re-
heating capability of each VAV box is relatively constant
across different SATs. Lastly, constraint (9) represents the
approximation that the occupancy is fixed over a short
window of time.

3.3 Modeling the VAV Box Control

Each VAV box uses air flow Fj and reheat amount Rj

to modulate the temperature of the j-th zone. The VAV
boxes use a PID controller (note that the use of a PID
controller in zone control is typical for building HVAC
systems (Honeywell, 1997)), and so we approximate this
as a proportional controller. This is not restrictive because
the “learning” portion of our LBMPC controller can
compensate for the unmodeled integrator portion of this
control. We will discuss this in the next section.

Let ej〈k〉 = Tj〈k〉 − Sj〈k〉 be the difference between the
zone temperature and the temperature set point for the
j-th zone (Sj). Then, we use the following model for the
control of reheat amount

Rj〈k〉 =


100, if ej〈k〉 < −1◦F

−100 · ej〈k〉, if − 1◦F ≤ ej〈k〉 < 0◦F

0, if ej〈k〉 ≥ 0◦F

. (10)

We assumed that each VAV box has the same controller,
and so this controller model was identified by fitting
a piecewise linear model to the observed data points
(ej〈k〉, Rj〈k〉) over all zones. A comparison of the data
points for a single zone and the fitted model is shown in
Fig. 2.

A similar model is used for the air flow amount

Fj〈k〉 =


αj , if ej〈k〉 < 0◦F

(ωj − αj) · ej〈k〉+ αj , if 0◦F ≤ ej〈k〉 < 1◦F

ωj , if ej〈k〉 ≥ 1◦F

,

(11)
where αj and ωj are the minimum and maximum amount
of air flow allowed in the j-th zone. These values are
configured by the building manager.

4. THE HYBRID SYSTEM LBMPC CONTROLLER

Several inputs can be used for control: The reheat Rj and
air flow Fj in each zone can be explicitly actuated, or they
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Fig. 2. A scatter plot of data taken from a single zone of
temperature error and reheat amount in percentage is
shown, along with the model (solid line) that we use
for the VAV box controller. The discrepancy is largely
due to the integrator term that we leave unmodeled;
our approach is to “learn” the value of the integrator
term as we are doing control.

can be implicitly actuated by varying the set point Sj .
Here, we only actuate the SAT; our methodology can be
extended to also utilize the other inputs.

For the sake of argument, suppose that the sequence of
SATs is fixed over a horizon of length N and starting at
time k = 1. So if the mode sequence of SATs is M =
m1, . . . ,mN , then the corresponding SATs are Ts〈1〉 =
Tsm1

, . . . , Ts〈N〉 = TsmN
. Consequently, the temperature

in each zone at time k can be computed by just “running”
or simulating the model forward in time; no optimization
is needed to compute the values of Fj ,Rj ,Tj , etc.

As a result, minimizing our cost function subject to the
thermal dynamics and system constraints requires opti-
mization over only the set of possible sequences. In other
words, our optimization problem is an integer program.
Fortunately, there is a constraint that greatly reduces
the computational complexity: The SAT can only change
once every hour; the reason for this constraint is that
large, frequent changes to the SAT can damage the HVAC
equipment. So if the horizon is N = 16, which corresponds
to four hours when sampling at 15 minute intervals, then
there are 3621 different combinations.

In order to further simplify the computational complexity,
we make use of a heuristic that further reduces the
computation. We specify that the mode is fixed over the
span of every hour. For our setup — where we have three
modes and four possible mode changes — this means
that we have to compute the cost for 34 = 81 different
combinations. This is a low number of combinations that
can be computed under one second on a desktop computer
because, as mentioned earlier, we do not need to optimize
over other variables. For future extensions where other
variables are used to do control, we would only need
to solve 81 convex optimization problems (specifically
quadratic programs), which can be reasonably solved.

4.1 Energy Modeling

Before we present the optimization formulation of the
controller, we provide some intuition into the form of the
cost function we use. A building HVAC system typically
has several individual pieces of equipment that contribute
to the overall energy usage. Within BRITE-S, most of the

energy consumption is due to three elements: the fans in
the AHU, the chiller that cools water and indirectly cools
air, and the reheating that occurs each zone’s VAV box.

Even though parameterizations of the energy usage of
the equipment are known (Kelman and Borrelli, 2011;
Oldewurtel et al., 2012), modeling these features is difficult
because individual energy measurements are usually not
available. There is another subtle point regarding the
energy models and their relationship to our cost function.
Let E1(·), E2(·), E3(·) be the energy due to fans, chiller,
and reheating. One possible cost is

∑
j(Tj−Sj)

2+λE1(·)+

µE2(·) + γE3(·), where λ, µ, γ ∈ R are constants. There
are two reasons for weighting energy usage based on type:
First, the energy usage of the equipment is often related to
the mechanical and physical stress on the equipment, and
so differential weighting allows a finer level of regulation
with respect to such considerations. Second, the energy
usage of equipment sometimes comes from different energy
sources. For example, heating is provided by steam while
the fans are powered by electricity in BRITE-S.

Because the cost function weights each energy usage func-
tion, we really only need to know the energy model up to
a constant, unknown scaling factor, because this gets sub-
sumed into the scaling in the cost function. This simplifies
the energy modeling that we do for the purpose of control.
We use the following energy models: The fan energy usage
is E1 ∼ (

∑
j Fj)

3 and the chiller energy is E2 ∼ (To −
Ts) ·

∑
j Fj (Kelman and Borrelli, 2011; Oldewurtel et al.,

2012), while the reheat energy is E3 ∼
∑

j Rj .

4.2 Optimization Formulation

We can now present the optimization formulation of the
hybrid system LBMPC controller. The basic intuition
behind LBMPC (Aswani et al., 2011a) is that two models
of the system are kept. The first is a nominal model that
is used with respect to the constraints, and the second
model is used in the cost function and is updated using
data gathered during control. This maintains robustness
while improving performance through model updates.

Without loss of generality, we assume that the control
action is being computed for time k = 1; also recall
that we do control at a rate of every 15 minutes. If
T j〈1〉, Rj〈1〉, F j〈1〉 are the predictions of the linear model

from time k = 0, then let q̂j〈i〉 = Tj〈1〉 − T j〈1〉, f̂j〈i〉 =

Fj〈1〉−F j〈1〉, r̂j〈i〉 = Rj〈1〉−Rj〈1〉. The intuition is that
these terms with hats represent corrections to the predic-
tions of the MPC and provide the adaptation inherent in
the controller (Aswani et al., 2011b). Specifically, q̂j rep-
resents an estimate of the heating load due to occupants,

weather, solar heating, and equipment; f̂j represents the
integrator term in the PID control of air flow in the j-th
VAV box; and r̂j represents the integrator term in the PID
control of reheat amount in the j-th VAV box.

The control action is given by the minimizer to



min
m1,...,mN

∑N
i=1

(∑
j(T̃j〈i+ 1〉 − Sj〈i+ 1〉)2 (12)

+ λ(
∑

j F̃j〈i〉)3 + γ
∑

j R̃j〈i〉

+ µ(To〈i〉 − Ts〈i〉) ·
∑

j F̃j〈i〉
)

s.t.(4), (10), (11)

F̃j = Fj + f̂j ; R̃j = Rj + r̂j

T̃j〈i+ 1〉 = ami
j T̃j〈i〉+ bmi

j F̃j〈i〉+ cmi
j R̃j〈i〉

+ q̂j〈i〉
Ts〈i〉 = Tmi

Ts〈4q + r〉 = Ts〈4q + s〉, ∀r, s ∈ {1, . . . , 4} (13)

∧ q ∈ {0, . . . , dN/4e − 1}
Tj〈i〉 ∈ [66◦F, 78◦F], ∀j ∈ {1, . . . , Z}

Note that constraint (13) allows the SAT Ts to switch
value only once an hour, which reduces the computational
complexity of the controller as discussed previously.

A desktop computer took an average of under one second
to solve this optimization problem for BRITE-S. Further-
more, we used values of λ = 6.7e4/(

∑
j αj)

3, µ = 1.3e−3,
and γ = 6.7. These values were picked using an iterative
process in which (a) the control was computed but not
used for actuation; (b) the control and predictions were
analyzed for if SAT stayed at higher values, the reheat
amount was low, and the air flow remained at moderate
levels; (c) the coefficients λ, µ, γ were changed and the
process starting at (a) was repeated until (b) was satisfied.

5. MEASURING EFFICIENCY

Separate energy measurements of the general space HVAC
system are not available in BRITE-S. Instead, we only
have access to measurements of both the general space
HVAC and the NanoLab HVAC. We denote these energy
measurements as E[i] for i = 1, . . . , D, where the index
i is over hourly intervals. Furthermore, we have measure-
ments of the OAT that correspond to the energy usage
measurements: To[i] for i = 1, . . . , D.

The general model describing the relationship between
energy usage, OAT, occupancy O, and other factors (e.g.,
solar effects, equipment, etc.) X is E = f(To, O,X), where
f(·, ·, ·) is an unknown, nonlinear relationship. But because
occupancy and other factors are generally not directly
measured, it is typically only possible to consider the
energy usage averaged over occupancy and other factors
Eo,x(To) = E

[
f(To, O,X)

∣∣To]. This can be estimated
using nonparametric regression (Györfi, 2002), and it is a
curve that describes the relationship between the OAT and
the average energy consumption. Intuitively, if the data
points (To[i], E[i]) for i = 1, . . . , D represent a scatter plot

of energy usage versus OAT; then Êo,x(To) represents the
smoothed version of the scatter plot.

The average amount of energy used in one hour is therefore
Eg = Eg

(
Eo,x(To)

)
= Eg

[
E
[
f(To, O,X)

∣∣To]], where g(To)
is a probability distribution of OATs. This notation allows
us to define the average amount of energy used in one
day as Eday =

∑24
i=1Egi , where gi(To) is the probability

distribution of OAT during the i-th hour of the day. For
simplicity, we assume a uniform distribution for the OAT.

This allows us to compare the energy efficiency of two
controllers. We can compute the quantities defined above
for each controller, and a nonparametric methodology
(Vilar-Fernndez et al., 2007) can be used to determine
whether the differences are statistically significant.

6. MEASURING OCCUPANT COMFORT

In order to define a quantification of comfort that is both
tractable and will scale to many buildings, we focus on
a measure that is only dependent on temperature. We
assume that the average temperature for the j-th zone
is measured at hourly intervals Tj [i] for i = 1, . . . , D.

Let (x)+ be the thresholding function, which is defined
so that (x)+ = 0 if x < 0 and (x)+ = x otherwise. We
define our quantification of comfort using soft thresholding

as C = 1/Z ·
∑Z

j=1

∫ 1

0
(|Tj − Sj | − Bj)+dt, where the

integral with respect to dt is over one hour of time, Sj

is the set point of the zone, and Bj is the amount of
temperature deviation for which the building has been
configured. The intuition is that this quantity increases
whenever Tj exceeds Sj by more than Bj , and the amount
of increase in this quantity is proportional to the amount
and duration of temperature deviation. The BRITE-S
building is configured for Bj ≡ 1◦F for all zones and times.

7. EXPERIMENTAL RESULTS

The hybrid system LBMPC controller was used to control
the SAT in BRITE-S for 8 days that spanned both
weekdays and weekends, and this was compared to 22 days
in which the default, manufacturer-provided controller
was used. Recall that our comparison methods implicitly
account for variations in energy usage due to occupancy,
and this is made explicit in the 95% confidence interval for
estimated values. The building and HVAC configurations
were kept identical for when both controllers were used,
and this configuration has been in use for over one year.

For notational reasons, we use a superscript 1 to refer
to the default controller, and superscript 2 denotes the
hybrid system LBMPC controller. Also, we define the
quantity ∆Ê2,1 = Ê2

day − Ê1
day to be the estimated

difference between the average energy usage over a day of
the LBMPC controller and that of the default controller.
The value ∆Ĉ2,1 = Ĉ2

day − Ĉ1
day is an analogous quantity

of the estimated difference in average comfort over a day.

The estimated energy characteristics Ê1
o,x(T0), Ê2

o,x(T0)
are shown in Fig. 3, and their differences are statistically
significant (p = 0.002). The estimated difference in average

energy usage over one day ∆Ê2,1 = −1.53MWh is statis-
tically significant (p = 0.002). And the 95% confidence

interval is ∆Ê2,1 ∈ [−2.07,−1.02]MWh.

The estimated comfort characteristics Ĉ1
o,x(T0), Ĉ2

o,x(T0)
are shown in Fig. 4, and their differences are not statisti-
cally significant (p = 0.8). Furthermore, the estimated dif-

ference in average comfort over one day ∆Ĉ2,1 = −0.75◦F
is not statistically significant (p = 0.5), meaning that there
is not enough evidence to exclude that ∆C2,1 = 0◦F.

The LBMPC controller provides modest energy savings at
most OATs, which sum up to significant savings over a day.
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Fig. 3. The cross marks and solid line (points and dashed
line) denote the energy characteristics of the LBMPC
(default) controller.

45 50 55 60 65 70 75
0

0.5

1

1.5

Outside Air Temperature (°F)

C
o
m

fo
rt

 (
°
F

)

45 50 55 60 65 70 75
0

0.5

1

1.5

Outside Air Temperature (°F)

C
o
m

fo
rt

 (
°
F

)

Fig. 4. The cross marks and solid line (points and
dashed line) denote the comfort characteristics of the
LBMPC (default) controller.

And because the difference in comfort characteristics is not
statistically significant, this suggests that the LBMPC and
default controllers provides comparable levels of comfort.

8. CONCLUSION

We have presented a hybrid model of building HVAC and
described its control using hybrid system LBMPC. Ex-
periments show substantial savings, and future directions
for further energy savings were discussed. More broadly
speaking, our experiments on BRITE-S, and previously on
BRITE, show that the LBMPC methodology can provide
significant energy savings for a wide variety of HVAC
systems operating using different physical modalities.
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