IEOR 151 — Lecture 4
Composite Minimax

1 Numerical Example for Point Gaussian Example

1.1 COMPUTING 7

Suppose X; ~ N (u1, 02) (for n = 20 data points) is iid data drawn from a normal distribution
with mean p and variance 0? = 20. Here, the mean is unknown, and we would like to
determine if the mean is py = 0 (decision dy) or u; = 4 (decision d;). Lastly, suppose our
loss function is

o L(po,do) =0 and L(ug,dy) =a=3;
[ J L(,U,l, do) =b=2and L(Ml, dl) = 0.
Recall that the minimax hypothesis test is given by

if X <~
EIE
d, if X >~

where 77 is the value of v that satisfies

a-(1=2(Vn(y—po)/o)) =b- 2(Vn(y — )/o).

The ®(-) denotes the cdf of a normal distribution and can be found from a standard z-table
or using a computer. The trick to finding this v value when using a z-table is to observe that
the left hand side (LHS) decreases as y increases, while the right hand side (RHS) increases
while ~ increases.

In our case, we would like to find the v that satisfies

3+ (1- B(v20(7 — 0)/V30)) = 2 (v20(y — 4)/V20),
or equivalently
3 (1= Dy —0) =2 By — 4),

We will do a search by hand to find the corresponding value of . For instance, if our
first guess is 7 = 2, then we find from the z-table that ®(2) = 0.9773 and ®(2 — 4) =
B(—2) = 1 — B(2) = 0.0227. Thus, we have 3 - (1 — ®(2)) = 3 - (1 — 0.9733) = 0.0801 and
2. d(—2) = 0.0454. Since the LHS is larger, this means we should increase .
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Now suppose our second guess is 7 = 2.5. Then, ®(2.5) = 0.9938 and ®(2.5 — 4) =
®(—1.5) =1—&(1.5) =1 —0.9332. Thus, we have that LHS = 3 - (1 —0.9938) = 0.0186
and RHS =2-(1—-0.9332) = 0.1336. Now, the RHS is larger and so we should decrease our
guess of 7. Since we know that v = 2 is too small, we could try half-way in between with
v = 2.25.

We can summarize the steps We conclude the process when we have sufficient accuracy

Step | LHS RHS

1 2 0.0801 | 0.0454
2.5 | 0.0186 | 0.1336
2.25 | 0.0367 | 0.0801
2.13 | 0.0498 | 0.0615
2.06 | 0.0591 | 0.0524
2.09 | 0.0549 | 0.0561
2.07 | 0.0577 | 0.0536
2.08 | 0.0563 | 0.0549

00 3 O U = W I

in our computed value of v. In this case, we know that v should be between 2.08 and 2.09,
and so we set v = 2.085. Computing v to more precision would require a computer.

1.2 DIFFERENCES IN 7 AS n CHANGES

In the above example, we computed 7} for a single value of n = 20. A natural question
to ask is what happens to v as n increase. In the table below, the value of v for different
values of n is given. These values were computed using a computer.

n Y
5 | 2.2658
10 | 2.1536
20 | 2.0855
100 | 2.0194
200 | 2.0099
300 | 2.0068

The trend is clear: As n increases, 7, is decreasing towards 2. The intuition is that when
we have little data, we err on the side of deciding d, since otherwise we incur a larger loss
if we incorrectly decide d;. As we gather more data, we are more confident that the sample
average is close to the true average, and so we can use a less biased threshold. Effectively,
with large amounts of data the threshold converges to (uo + p1)/2.

2 Composite Gaussian Example

In our discussion so far, we have considered a situation in which the two hypothesis each
represent a distribution with a single mean. However, another class of interesting and more
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general hypotheses are those in which we would like to discrimination between Hy : p <
fo versus Hy : p > po. And suppose we keep a similar loss function of L(Hy,dy) = 0,
L(Hy,dy) = a, L(Hy,dy) = b, and L(Hy,d;) = 0. In the minimax framework, this class of
hypotheses are not well-posed because the worst case scenario occurs when “nature” selects
I = o, because then it is not possible to distinguish between dy and d;.

More rigorously, what happens is that the minimax procedure is defined by solving the
optimization problem

inf sup R(u, d).
nf sup (1, 0)

And nature will choose

sup R(p,6) = sup a-P,(dy =(X))}

Hp <o B S o

= By (dy = (X))}
and

sup R(p,0) = sup b-P,(dy=0(X))}

pp>po B> o

— b Py (do = 6(X))}.

This last step is subtle: Even though nature is constrained to choose > g, it can choose
i to be arbitarily close to pg. Thus, in the worst case scenario described by the minimax
framework, nature will effectively set u = pp even though we are in the case H1 : u > pqg.

Because of this pathological behavior, the best we can do with a minimax procedure is
to make a purely probabilistic decision:

5(X) = do, with probability a/(a + b)
di  w.p. b/(a+Db)

This is not a useful rule for decision making, and so we must consider alternative classes of
hypotheses.

One interesting class of hypotheses is the following: Suppose X1,..., X, ~ N (u,0?) is
iid data drawn from a normal distribution with mean g and known variance o?; here, the
mean is unknown. The decision we would like to make is whether the mean is Hy : p < pg
or Hy : > py. We are indifferent in the case where I : € (o, pt1). Our loss function also
encodes this region of indifference

o L(Ho,do) =0, L(Ho,d1) = a;
L4 L(Hlado):b7 L(Hladl):07
L4 L(I,do) == 0, L(I,dl) =0.



It turns out that this composite hypothesis test has the same minimax procedure as the
point hypothesis test. To summarize, we choose 7 so that it satisfies

a-(1=®(Vn(y—po)/o)) =b-2(Vn(y = m)/o),
where ®(-) is the cdf of a normal distribution. If we call this resulting value v*, then our

decision rule is

5(X) =

d(), lfy < ’)/*
dy, if X >~

Showing that this decision rule is a minimax procedure is beyond the scope of the class.
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