
IEOR 151 – Lecture 4

Composite Minimax

1 Numerical Example for Point Gaussian Example

1.1 Computing γ

Suppose Xi ∼ N (µ, σ2) (for n = 20 data points) is iid data drawn from a normal distribution
with mean µ and variance σ2 = 20. Here, the mean is unknown, and we would like to
determine if the mean is µ0 = 0 (decision d0) or µ1 = 4 (decision d1). Lastly, suppose our
loss function is

• L(µ0, d0) = 0 and L(µ0, d1) = a = 3;

• L(µ1, d0) = b = 2 and L(µ1, d1) = 0.

Recall that the minimax hypothesis test is given by

δ(X) =

{
d0, if X ≤ γ∗n
d1, if X > γ∗n

where γ∗n is the value of γ that satisfies

a · (1− Φ(
√
n(γ − µ0)/σ)) = b · Φ(

√
n(γ − µ1)/σ).

The Φ(·) denotes the cdf of a normal distribution and can be found from a standard z-table
or using a computer. The trick to finding this γ value when using a z-table is to observe that
the left hand side (LHS) decreases as γ increases, while the right hand side (RHS) increases
while γ increases.

In our case, we would like to find the γ that satisfies

3 · (1− Φ(
√

20(γ − 0)/
√

20)) = 2 · Φ(
√

20(γ − 4)/
√

20),

or equivalently
3 · (1− Φ(γ − 0)) = 2 · Φ(γ − 4),

We will do a search by hand to find the corresponding value of γ. For instance, if our
first guess is γ = 2, then we find from the z-table that Φ(2) = 0.9773 and Φ(2 − 4) =
Φ(−2) = 1 − Φ(2) = 0.0227. Thus, we have 3 · (1 − Φ(2)) = 3 · (1 − 0.9733) = 0.0801 and
2 · Φ(−2) = 0.0454. Since the LHS is larger, this means we should increase γ.
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Now suppose our second guess is γ = 2.5. Then, Φ(2.5) = 0.9938 and Φ(2.5 − 4) =
Φ(−1.5) = 1 − Φ(1.5) = 1 − 0.9332. Thus, we have that LHS = 3 · (1 − 0.9938) = 0.0186
and RHS = 2 · (1−0.9332) = 0.1336. Now, the RHS is larger and so we should decrease our
guess of γ. Since we know that γ = 2 is too small, we could try half-way in between with
γ = 2.25.

We can summarize the steps We conclude the process when we have sufficient accuracy

Step γ LHS RHS
1 2 0.0801 0.0454
2 2.5 0.0186 0.1336
3 2.25 0.0367 0.0801
4 2.13 0.0498 0.0615
5 2.06 0.0591 0.0524
6 2.09 0.0549 0.0561
7 2.07 0.0577 0.0536
8 2.08 0.0563 0.0549

in our computed value of γ. In this case, we know that γ should be between 2.08 and 2.09,
and so we set γ∗n = 2.085. Computing γ to more precision would require a computer.

1.2 Differences in γ as n Changes

In the above example, we computed γ∗n for a single value of n = 20. A natural question
to ask is what happens to γ as n increase. In the table below, the value of γ∗n for different
values of n is given. These values were computed using a computer.

n γ∗n
5 2.2658
10 2.1536
20 2.0855
100 2.0194
200 2.0099
300 2.0068

The trend is clear: As n increases, γ∗n is decreasing towards 2. The intuition is that when
we have little data, we err on the side of deciding d0 since otherwise we incur a larger loss
if we incorrectly decide d1. As we gather more data, we are more confident that the sample
average is close to the true average, and so we can use a less biased threshold. Effectively,
with large amounts of data the threshold converges to (µ0 + µ1)/2.

2 Composite Gaussian Example

In our discussion so far, we have considered a situation in which the two hypothesis each
represent a distribution with a single mean. However, another class of interesting and more
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general hypotheses are those in which we would like to discrimination between H0 : µ ≤
µ0 versus H1 : µ > µ0. And suppose we keep a similar loss function of L(H0, d0) = 0,
L(H0, d1) = a, L(H1, d0) = b, and L(H1, d1) = 0. In the minimax framework, this class of
hypotheses are not well-posed because the worst case scenario occurs when “nature” selects
µ = µ0, because then it is not possible to distinguish between d0 and d1.

More rigorously, what happens is that the minimax procedure is defined by solving the
optimization problem

inf
δ(u)

sup
µ
R(µ, δ).

And nature will choose

sup
µ:µ≤µ0

R(µ, δ) = sup
µ:µ≤µ0

a · Pµ(d1 = δ(X))}

= a · Pµ0(d1 = δ(X))}

and

sup
µ:µ>µ0

R(µ, δ) = sup
µ:µ>µ0

b · Pµ(d0 = δ(X))}

= b · Pµ0(d0 = δ(X))}.

This last step is subtle: Even though nature is constrained to choose µ > µ0, it can choose
µ to be arbitarily close to µ0. Thus, in the worst case scenario described by the minimax
framework, nature will effectively set µ = µ0 even though we are in the case H1 : µ > µ0.

Because of this pathological behavior, the best we can do with a minimax procedure is
to make a purely probabilistic decision:

δ(X) =

{
d0, with probability a/(a+ b)

d1 w.p. b/(a+ b)

This is not a useful rule for decision making, and so we must consider alternative classes of
hypotheses.

One interesting class of hypotheses is the following: Suppose X1, . . . , Xn ∼ N (µ, σ2) is
iid data drawn from a normal distribution with mean µ and known variance σ2; here, the
mean is unknown. The decision we would like to make is whether the mean is H0 : µ ≤ µ0

or H1 : µ ≥ µ1. We are indifferent in the case where I : µ ∈ (µ0, µ1). Our loss function also
encodes this region of indifference

• L(H0, d0) = 0, L(H0, d1) = a;

• L(H1, d0) = b, L(H1, d1) = 0;

• L(I, d0) = 0, L(I, d1) = 0.
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It turns out that this composite hypothesis test has the same minimax procedure as the
point hypothesis test. To summarize, we choose γ so that it satisfies

a · (1− Φ(
√
n(γ − µ0)/σ)) = b · Φ(

√
n(γ − µ1)/σ),

where Φ(·) is the cdf of a normal distribution. If we call this resulting value γ∗, then our
decision rule is

δ(X) =

{
d0, if X ≤ γ∗

d1, if X > γ∗

Showing that this decision rule is a minimax procedure is beyond the scope of the class.
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