
IEOR 151 – Lecture 6

Data-Driven Newsvendor

1 Nonparametric Newsvendor

Recall that in the setting of the nonparametric newsvendor problem, we do not know what
our distribution on the demand is. Instead, we have iid samples of our demand X1, . . . , Xn,
which is drawn from some distribution with unknown cdf F (u). A nonparametric formulation
of the newsvendor problem is to compute δ∗ to solve the following optimization problem

min
δ

1

n

n∑
i=1

(cf + cv · δ − p · (δ −Xi)
− + q · (δ −Xi)

+).

The intuition is that this is the sample average of the loss. Because the objective function
of the nonparametric newsvendor problem is the expectation of the newsvendor loss under
the empirical distribution

F̂ (z) =
1

n

n∑
i=1

1(z ≤ Xi),

the solution is immediate: We should choose an inventory level δ∗ such that

F̂ (δ∗) =
p− cv
p+ q

.

If we sort the Xi into increasing order X(1), X(2), . . . , X(n), then the solution corresponds to
the dn · (p−cv

p+q
)e-th value. In other words, the solution is the value

X(dn·( p−cv
p+q

)e).

2 Linear Parametric Newsvendor

Suppose we have samples of demand X1, . . . , Xn ∈ R along with samples of input variables
Z1, . . . , Zn ∈ Rp that can predict demand. For instance, suppose we are looking at the de-
mand for ice cream. Then the input variables Zi might be a vector with a component for
the outside temperature and another component for the amount of rainfall in the day. Given
this setting, we could potentially use a parametric model that takes the input variables and
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predicts the corresponding demand. For this model, we would like to choose the parame-
ters of the model to made demand predictions to minimize the expected newsvendor loss.
Mathematically, we can pose this problem as the following optimization problem

min
β

1

n

n∑
i=1

(cf + cv · Z ′iβ − p · (Z ′iβ −Xi)
− + q · (Z ′iβ −Xi)

+),

where β is a vector of parameters, Z ′i denotes the transpose of Zi, and the decision rule for
demand is δ = Z ′β. In particular, for this decision rule the inventory level depends upon
the most recent data we have available.

Computing the β vector is tractable. This problem can be reformulated as a linear
program (LP):

min
1

n

n∑
i=1

(cf + cv · Z ′iβ + p · si + q · ti)

s.t. si ≥ −(Z ′iβ −Xi)

ti ≥ (Z ′iβ −Xi)

si, ti ≥ 0.

2.1 Regularization

Just as is done in regression modeling, we can regularize this problem using L1-regularization,
L2-regularization, or both. The statistical advantages of L1- and L2-regularization translate
to this setting. Recall that L1-regularization helps when we expect most of the input variables
do not affect demand, and L2-regularization helps when there is a significant amount of
correlation between the input variables.

The L1-regularized version of the problem is

min
β

1

n

n∑
i=1

(cf + cv · Z ′iβ − p · (Z ′iβ −Xi)
− + q · (Z ′iβ −Xi)

+) + λ‖β‖1,

where λ > 0 is a tuning parameter (which can be chosen using cross-validation) and ‖β‖1 =∑p
k=1 |βk| is the `1 norm of a p-dimensional vector. This problem can be formulated as an

LP, but requires additional exposition.

3 LP Lift of the L1 Ball

Suppose x ∈ R2, and consider the constraint ‖x‖1 = |x1| + |x2| ≤ 1. Note this constraint
is indicated by the shaded green square on the left side of the image below. One way to
represent this constraint set is as the intersection of four half-spaces. For instance, the
half-space −x1 + x2 − 1 ≤ 0 is shown on the right side of the image below.
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Hence, the constraint |x1|+ |x2|−1 ≤ 0 can be written as the intersection of four half-spaces:

x1 + x2 − 1 ≤ 0

x1 − x2 − 1 ≤ 0

− x1 + x2 − 1 ≤ 0

− x1 − x2 − 1 ≤ 0.

Another representation of the constraint |x1| + |x2| − 1 ≤ 0 is as the projection of a
set. For example, we can write |x1| ≤ 1 as the projection of a polytope by introducing an
additional variable t1:

− t1 ≤ x1 ≤ t1

t1 = 1

Thus, the constraint |x1| + |x2| − 1 ≤ 0 can be written as the projection of a polytope by
introducing two additional variables t1, t2. We can write this constraint as

− t1 ≤ x1 ≤ t1

− t2 ≤ x2 ≤ t2

t1 + t2 = 1.

Now consider the constraint
∑p

k=1 |xk| − 1 ≤ 0. We can write this constraint as the
intersection of half-spaces:

p∑
k=1

±xk − 1 ≤ 0,

where the ± indicates that every possible permutation of signs is included in this set of
constraints. There are p variables x1, . . . , xp and 2p constraints/inequalities. However, we
can also write this constraint as the projection of a polytope:

− tk ≤ xk ≤ tk, ∀k = 1, . . . , p
p∑

k=1

tk = 1.

3



There are 2p variables x1, . . . , xp, t1, . . . , tp and 2p+1 constraints/inequalities. The constraint∑p
k=1 |xk| − 1 ≤ 0 requires significantly less inequalities (as compared to repesenting the set

by the intersection of half-spaces) when represented as the projection of a polytope.

4 LP Formulation of L1-Regularized Linear Parametric Newsvendor

We are now ready to reformulate this problem as an LP. In particular, the reformulation is

min
1

n

n∑
i=1

(cf + cv · Z ′iβ + p · si + q · ti) + λ · U

s.t. si ≥ −(Z ′iβ −Xi)

ti ≥ (Z ′iβ −Xi)

si, ti ≥ 0

− vk ≤ βk ≤ vk,∀k = 1, . . . , p
p∑

k=1

vk = U.
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