
IEOR 151 – Lecture 3

Risk in Decision Making

1 Motivating Example

Suppose there is a chain of fast food restaurants that only offers lunch/dinner options on
its menu. Given the potential for a new revenue source, the chain is deciding whether it
should begin to offer breakfast options for its menu. The introduction of breakfast is not
without risk, though, because of the costs associated with expanding the menu. There are
both additional fixed and recurring costs associated with this change. Based on these costs,
the chain has determined that offering breakfast is financially beneficial only if the additional
revenue in each restaurant exceeds $7500.

To assist in this decision, the chain has tested the new menu in a limited number of
randomly selected locations. Specifically, the chain has implemented the new menu in 20
restaurant locations and found that the average increase in revenue is $8214. Furthermore,
an analyst has conducted a one-sided hypothesis test (with null hypothesis that the revenue
increase is $7500 or lower) to determine if the revenue increase is from the breakeven point
of $7500 is statistically significant, and the resulting p-value is p = 0.045.

A common approach to decision-making using hypothesis tests is to (i) choose a signif-
icance level α and then (ii) reject the null hypothesis whenever the p-value is smaller. One
choice is α = 0.05, and so we would reject the null hypothesis in this case based on this
analysis. However, the choice of α = 0.05 is somewhat arbitrary. More importantly, this
approach does not explicitly incorporate the notion of risk of making incorrect decisions in
either direction.

2 Loss Functions

In order to be able to specify risk, it is useful to make a few definitions. One framework for
decision making incorporates the following three elements

1. X is the set of data we have collected, and whose distribution fX(u; θ) is partly known;
the θ is a parameter that labels the different possible distributions, and it belongs to
some known set Ω call the parameter space;

2. δ(u) is a function known as a decision rule, and it inputs data and outputs a decision
d; the set of possible decisions is D;
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3. There is a loss associated with making decision d when the distribution of X is fX(u; θ);
this is expressed as a nonnegative real number L(θ, d), and it is known as a loss function.

The significance of a loss function L(θ, d) is that if we were to use our decision rule δ to
make many decisions in a case where fX(u; θ) is the true distribution of X, then the sample
average of the loss will converge to the expected loss

R(θ, δ) = E(L(θ, δ(X))).

This function R(θ, δ) is known as a risk function. In the statistics literature, it is convention
to indicate undesirable results with high values of loss and risk.

2.1 Point Gaussian Example

Suppose X1, X2, . . . , Xn ∼ N (µ, 1) is iid data drawn from a normal distribution with mean µ
and variance σ2 = 1; here, the mean is unknown. This specifies the first element for decision
making.

Consider a situation in which the decision we would like to make is whether the mean
is µ0 or µ1. There are two possible decisions

1. d0 is the decision that the mean is µ0;

2. d1 is the decision that the mean is µ1.

For convenience, we will assume here that µ0 < µ1.
Specifying a loss function is difficult because it is situation dependent, but one loss that

applies to this example is

• L(µ0, d0) = 0 and L(µ0, d1) = a; in the situation where the true mean is µ0, there is
no loss if we correctly decide the mean is µ0, otherwise we have a loss of a if we decide
the mean is µ1;

• L(µ1, d0) = b and L(µ1, d1) = 0; in the situation where the true mean is µ1, there is
no loss if we correctly decide the mean is µ1, otherwise we have a loss of b if we decide
the mean is µ0.

We will assume that these a, b values are positive: a > 0 and b > 0.

3 Minimax Procedures

The complication associated with this formulation is that constructing a decision rule δ(u)
to minimize the risk function R(θ, δ) requires knowing the parameter θ, which is unknown.
And so we need some way to compare decision rules so that we can select a “best” decision
rule. There are multiple approaches to this, and one approach is the minimax procedure.
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In this method, we would like to pick a decision rule to that solves the following opti-
mization problem

min
δ(u)

max
θ∈Ω

R(θ, δ).

In general, solving this optimization problem is very difficult. However, it can be solved in
a few special cases.

3.1 Point Gaussian Example

Recall our Gaussian example, and suppose we would like to compute a minimax hypothesis
test. This means that we would like to solve

min
δ(u)

max
µ∈{µ0,µ1}

E(L(µ, δ(X))).

Note that if µ = µ0, then

E(L(µ, δ(X))) = E(L(µ0, δ(X)))

= L(µ0, d0)Pµ0(d0 = δ(X)) + L(µ0, d1)Pµ0(d1 = δ(X))

= a · Pµ0(d1 = δ(X)),

since L(µ0, d0) = 0 and L(µ0, d1) = a. A similar computation gives

E(L(µ, δ(X))) = b · Pµ1(d0 = δ(X)).

Combining everything, the optimization problem we would like to solve is

min
δ(u)

max{a · Pµ0(d1 = δ(X)), b · Pµ1(d0 = δ(X))}.

One reason this is a difficult to solve is that it is an infinite-dimensional optimization problem
because δ(u) is a function to be optimized over. For simplicity, suppose the decision rule is
given by

δ(u) =

{
d0, if 1

n

∑n
i=1 Xi ≤ γ

d1, if 1
n

∑n
i=1 Xi > γ

for some value of γ that we will compute. By imposing this specific decision rule, we have
converted our infinite-dimensional optimization problem over δ(u) into a finite-dimensional
problem over γ.

For notational simplicity, we will denote the sample average by X = 1
n

∑n
i=1Xi. Now

suppose we choose γ such that

a · Pµ0(X > γ) = b · Pµ1(X ≤ γ).

Since each Xi ∼ N (µ, 1) are iid, the sample average X is also Gaussian with mean µ and
variance 1/n. As a result, we can restate the condition we use to choose γ so that it satisfies

a · (1− Φ(
√
n(γ − µ0))) = b · Φ(

√
n(γ − µ1)),
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where Φ(·) is the cdf of a normal distribution and can be found from a standard z-table or
using a computer. If we call this resulting value γ∗, then our decision rule is

δ(X) =

{
d0, if X ≤ γ∗

d1, if X > γ∗

It turns out that this decision rule is a minimax procedure (meaning that it solves the
minimax optimization problem above), though showing this is beyond the scope of the class.

4 Further Details

More details about these concepts can be found in the book Testing Statistical Hypotheses
by Lehmann and Romano, from which much of the above material is found.
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