
IEOR 151 – Lecture 20

Queues

1 Generic Queues

Queueing theory is the mathematical study of waiting lines, and here we will discuss models
of queues using a stochastic processes approach to this topic. In general, we will be interested
in modeling the following aspects of queues:

1. Arrival process – that describes how customers enter the queue

2. Service process – that describes how customers are served.

3. The number of servers

4. Maximum number of customers that can be in line. We will assume this is infinite.

5. The size of the pool of customers. We will assume this is infinite.

6. Service discipline – that describes how customers in line are chosen for service. We
will assume first in first out (FIFO).

These models are analyzed to determine

1. The mean number in the system (in the line and in service)

2. The mean number in line

3. The mean time spent in the system or in the line

2 Review of Poisson Processes

A Poisson process is an integer-valued counting process {N(t), t ≥ 0} (with N(t) ∈ N) in
which the interarrival times are described by an exponential distribution. Recall that an
exponential distribution with rate λ > 0 has distribution function F (u) = 1− exp(λu), and
its mean is 1/λ. Exponential distributions have an interesting memoryless property, meaning
that if T has exponential distribution, then

P[T > s+ t|T > s] = P(T > t).

What this intuitively means is that if you are waiting for an arrival for s units of time, then
the probability of an arrival after t additional units of time does not depend on how long
you have been waiting for.

1



3 Steady-State Distribution of Markov Chain

Suppose we have a Markov chain represented by a graph G = (V,E) with appropriate edge
weights to represent transition rates. Let p(t) ∈ Rn be a vector of probabilities, in which
pk(t) denotes the probability that the current state is vk ∈ V . We can represent the change
in probability over time by a differential equation:

dpk
dt

=
(
wkk +

∑
j:ekj∈E −wkj

)
pk +

(∑
j:ejk∈E wjk

)
pj,

which are known as the Kolmogorov forward equations. The interpretation is that probability
flows into vk from vj : ejk ∈ E and flows out of vk into vj : ekj ∈ E. Because the quantities
multiplying p on the right hand side are constants, this is in fact a linear ordinary differential
equation, which can be written as

dp

dt
= Ap.

The steady-state distribution is a vector of probabilities such that dp/dt = 0, which in
this case implies Ap = 0 or that p belongs to the null space of A. A Markov chain is not
guaranteed to have a steady-state distribution, but it will have such a distribution in many
cases. Also, the situation of Markov chains with an infinite-dimensional (but countable)
state space is similar but with the change that A must now be an infinite-dimensional linear
operator.

4 M/M/1 Queues

We will begin by focusing on Markovian queues, in which the arrival process is Poisson and
the service times have an exponential distribution. The notation M/M/1 indicates a model
in which the arrival process is Poisson with rate λ, the service times are exponential with
rate µ, and there is one server. First, note that the queue is unstable if λ ≥ µ; this is a
situation in which on average customers arrive at a faster rate than they are served.

Here, we will calculate the average number of customers in line. Let pk(t) be the probability
that there are k customers in line at time t. Then, we have that

dp0/dt = −λp0 + µp1

dpk/dt = λpk−1 − (λ+ µ)pk + µpk+1.

For pk and k > 0, we can think of (λ+ µ) as the rate of outward flow, λ the rate of inward
flow from pk−1, and µ the rate of inward flow from pk+1. And at steady state, we must have
that dp0/dt = 0 and dpk/dt = 0 for all k > 0, which means that

0 = −λp0 + µp1

0 = −λpk−1 − (λ+ µ)pk + µpk+1.
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Additionally, we must have that
∑

k≥0 pk = 1. After some work (there are a number of

approaches to show this), we get that pk = (1− ρ)ρk, where ρ = λ/µ is the utilization ratio
that describes the fraction of time that the server is working.

Given the steady state distribution of the queue, we can now compute the expected number
of customers in line. The distribution pk is a geometric distribution, and so a standard result
gives that

L = E(k) =
∑
k≥0

kpk =
∑
k≥0

k(1− ρ)ρk = ρ/(1− ρ).

5 More Information and References

The material in these notes follows that of the course textbook “Service Systems” by Mark
Daskin.
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